Weak Gravitational Lensing
The only things you really need to know from GR:

- Friedmann equations
- Deflection of light: $\quad \hat{\alpha}=\frac{4 G M}{b c^{2}}$

$$
\theta_{I} \cdot D_{c S}=\Theta_{S} \cdot D_{o s}+\hat{\alpha} \cdot D_{L S} \Rightarrow \theta_{S}=\theta_{I}-\hat{\alpha} \frac{D_{L S}}{D_{o S}}=\theta_{I}-\frac{4 G M}{C^{2}} \frac{D_{S}}{\Theta_{I} D_{o D} D_{o s}}
$$

Circularly symmetric lenses

- An annular ring of mass causes no deflection interior to it
- Acts as a point mass for rays exterior to it.

$$
\Rightarrow \quad \theta_{s}=\theta_{I}-\underbrace{\frac{4 G}{c^{2}} \cdot \frac{D_{L S}}{D_{O S} D_{o L}} \cdot \frac{M\left(<\Theta_{I}\right)}{\Theta_{I}}}_{\equiv \alpha\left(\theta_{I}\right)} \text { \& mass interior to } \theta_{I} \text {. }
$$

Graphical solution:

Einstein ring: If $\Theta_{s}=0$ (observer-source-lens alignment)
And $\theta_{I}=\alpha\left(\theta_{I}\right)$, then a ring image is formed arouncl source.
e.q. point mass $0=\theta_{E}-\frac{4 G M D_{L S}}{D_{O S} D_{O L} c^{2}} \cdot \frac{1}{\theta_{E}} \Rightarrow \theta_{E}=\sqrt{\frac{4 G M D_{L S}}{D_{O S} D_{O L} c^{2}}}$

Example: singular isothermal sphere (SIS)
What Bd spherically -symmetric mass distribution $\rho(r)$ would host a galaxy with a flat rotation curve $V(r)=V_{\text {cire }}$?

Newton says $\quad \frac{V_{\text {cire }}^{2}}{r}=\frac{G M(\langle r)}{r^{2}}$

$$
\begin{aligned}
& \Rightarrow G M(<r)=V_{\text {cir }}^{2} r \\
& \Rightarrow \frac{d}{d r} G M(<r)=4 \pi G r^{2} \rho(r)=V_{\text {circ }}^{2} \\
& \Rightarrow \rho(r)=\frac{V_{c i r c}^{2}}{4 \pi G} \cdot \frac{1}{r^{2}}
\end{aligned}
$$

The projected suffice density is

$$
\begin{aligned}
& \text { rojected suffice density is } \\
& \begin{aligned}
\sum(b) & =\int_{-\infty}^{\infty} d z \cdot \rho\left(\sqrt{b^{2}+z^{2}}\right)=\frac{V_{c \mid r}^{2}}{4 \pi G} \cdot \int_{-\infty}^{\infty} \frac{d z}{b^{2}+z^{2}}=\left.\frac{V_{c i r c}^{2}}{4 \pi G b} \cdot \tan ^{-1} u\right|_{-\infty} ^{\infty} \\
& =\frac{V_{c r c}^{2}}{4 G b}=\frac{\sigma^{2}}{2 G b} \text { velocity dispersion for isotropic } v^{\prime} \text { s. } \\
\hat{\alpha}_{s i s}(b) & =\frac{H G}{c^{2} b} \cdot \int_{r=0}^{b} 2 \pi r d r \sum(r)=\frac{8 \pi G}{c^{2} b} \cdot \int_{0}^{b} r d r \cdot \frac{\sigma^{2}}{2 G r}=4 \pi \frac{\sigma^{2}}{c^{2}}
\end{aligned}
\end{aligned}
$$

The deflection angle of an SIS is independent of radius!

The critical density-
Our Einstein radius satisfies

$$
\begin{aligned}
0 & =\Theta_{I}-\frac{4 G}{c^{2}} \cdot \frac{D_{L S}}{D_{O L} D_{O S}} \frac{M\left(<\theta_{E}\right)}{\theta_{E}} \\
\Rightarrow \quad 1 & =\frac{4 G}{c^{2}} \cdot \frac{D_{L S}}{D_{O L} D_{O S}} \frac{M\left(\left\langle\theta_{I}\right)\right.}{\theta_{E}^{2}}=\frac{4 \pi G}{C^{2}} \cdot \frac{D_{O L} D_{L S}}{D_{O S}} \cdot \frac{M(<b)}{\pi b^{2}} \\
& =\bar{\sum}\left(\left\langle\theta_{E}\right) / \sum_{\text {crit }}, \sum_{\text {crt }} \equiv \frac{c^{2}}{4 \pi G} \cdot \frac{D_{O S}}{\left.D_{O L}\right\rangle_{L S}}\right.
\end{aligned}
$$

mean projected physical
surface density with in θ_{E}
Every Einstein ring enclosey averaged surface density $\bar{\Sigma}\left(s \theta_{E}\right)=\sum_{\text {crit }}$!
For cosmological distances $D \sim C / H_{0}$,

$$
\begin{aligned}
& \sum_{\text {cit }} \sim \frac{c H_{0}}{4 \pi G} \approx \frac{3 \times 10^{0} \mathrm{~m} / \mathrm{s} \times\left(4.5 \times 10^{17} \mathrm{~s}\right)^{-1}}{4 \pi \times 6.67 \times 10^{-11} \mathrm{~kg}^{-1} \mathrm{~m}^{3} \mathrm{~s}^{-2}}=0.8 \frac{\mathrm{~kg}}{\mathrm{~m}^{2}} \\
& \text { the mass inside an Einstein ring) }
\end{aligned}
$$

* We always know the mass inside an Einstein ring!
* Only systems with $\Sigma>\sum_{\text {crit }}$ will cause "strong lensing" like multiple imaging
* Less than 0.1% of cosmological lines of sight have enough density for SL \because

Sub-critical circular lensing

- If your source is not close enough to the lens center to be multiply imaged. how can you tell it's lensed??

We can see θ_{I} but have no clue of θ_{S} withat removing the lens!

- But the SHAPE of the source is also changed by lensing!

Consider a small circular source of diameter $\Delta \theta_{s}$. It must fit in the same wedge after it's lensed.
Its major axis will be $a=\frac{\theta_{I}}{\theta_{S}} \cdot \Delta \theta_{s}=\frac{\theta_{I}}{\theta_{I}-\alpha} \cdot \Delta \theta_{S}$ We get its minor axis by differentiating the lens eq'n:

$$
\begin{gathered}
\theta_{S}=\theta_{I}-\alpha\left(\theta_{I}\right) \\
\Delta \theta_{S}=\Delta \theta_{I}-\left.\frac{d \alpha}{d \theta}\right|_{\theta_{I}} \Delta \theta_{I} \Rightarrow \Delta \theta_{I}=b=\frac{\Delta \theta_{S}}{1-d \alpha / d \theta_{I}}
\end{gathered}
$$

The galaxy image is now elliptical with tangential elongation described by

$$
\gamma_{t} \equiv \frac{a-b}{a+b}=\frac{1}{2} \cdot\left(\frac{\alpha}{\theta_{I}}-\frac{d \alpha}{d \theta_{I}}\right) \quad \text { (in limit } \alpha \ll \theta_{s} \text {) SHEAR }
$$

and it is larger and brighter by $1+\mu=\frac{a b}{A \theta_{s}^{2}} \Rightarrow \mu=\frac{\alpha}{\theta_{I}}+\frac{d \alpha}{d \theta_{I}}$.MAGNIFICATION

Weak lensing "aperture mass" formula.
Remember $\quad \alpha\left(\theta_{I}\right)=\frac{4 G}{C^{2}} \cdot \frac{D_{L S}}{D_{O S} D_{O L}} \cdot \frac{M\left(<\Theta_{I}\right)}{\Theta_{I}}$

$$
\begin{aligned}
\Rightarrow \frac{\alpha}{\theta_{I}}=\frac{4 \pi G}{c^{2}} \frac{D_{L S} D_{O L}}{D_{O S}} \cdot \frac{M\left(\left\langle\theta_{I}\right)\right.}{\pi\left(\theta_{I} D_{O L}\right)^{2}}=\bar{\Sigma}\left(\theta_{I}\right) / \Sigma_{c r i t} \\
\begin{aligned}
\frac{d \alpha}{d \theta_{I}} & =\frac{4 G}{c^{2}} \frac{D_{L S}}{D_{O S} D_{O L}}\left(-\frac{M\left(\left\langle\theta_{I}\right)\right.}{\theta_{I}^{2}}+\frac{1}{\theta_{I}} \frac{d M\left(\left\langle\theta_{I}\right)\right.}{d \theta_{I}}\right) \\
& =\frac{4 \pi G}{c^{2}} \frac{D_{L S} D_{O L}}{D_{O S}}\left(\frac{-M\left(\left\langle\theta_{I}\right)\right.}{\pi\left(D_{O L} \theta_{I}\right)^{2}}+\frac{2 \pi \cdot\left(D_{O}\left(\otimes_{I}\right) \cdot \Sigma\left(D_{O L} \theta_{I}\right) \cdot D_{O L}\right.}{\pi \pi D_{O L}^{2} \theta_{I}}\right) \\
& =\frac{1}{\Sigma_{\text {crit }}} \cdot\left(-\sum\left(\left\langle\theta_{I}\right)+2 \Sigma\left(\theta_{I}\right)\right)\right.
\end{aligned}
\end{aligned}
$$

We then get
SHEAR: $\quad \gamma_{t}=\frac{\bar{\sum}\left(\left\langle\theta_{I}\right)-\Sigma\left(\theta_{I}\right)\right.}{\Sigma_{\text {crit }}}=\bar{K}\left(<\theta_{ \pm}\right)-k\left(\theta_{I}\right)$
MAGNIFICATION: $\mu=2 \cdot \Sigma\left(\theta_{I}\right) / \sum_{\text {crit }}=2 K\left(\theta_{I}\right)$
$K \equiv \sum / \sum_{\text {cit }}$ is called convergence

Remarkably, these formulae work for arbitrary mass distributions! ... if we average around a circle

$$
\begin{aligned}
& \left\langle\gamma_{t}\right\rangle_{\theta_{I}}=\bar{k}\left(\left\langle\theta_{I}\right)-\left\langle k\left(\theta_{I}\right)\right\rangle\right. \\
& \langle\mu\rangle=2\left\langle k\left(\theta_{I}\right)\right\rangle
\end{aligned}
$$

We can use these formulae to measure the total mass profiles of a single or collection of objects!

General ad lensing formulae

Whet th $\bar{x}=2 d$ location on lens plane of observed pos'n. $\left(\bar{\theta}_{I}=\bar{x} / D_{\text {QL }}\right)$
$\bar{x}^{\prime}=$ position of mass on lens plane $\quad\left(\bar{\Theta}_{L}=\bar{x}^{\prime} / D_{o L}\right)$
$\sum(\bar{x})=$ surface mass distribution of lens
$\bar{\alpha}=$ apparent $2 d$ deflection angle

$$
\begin{aligned}
\bar{x}(\bar{x}) & =\frac{4 G}{c^{2}} \frac{D_{5 s}}{D_{0 S}} \int d^{2} \bar{x}^{\prime} \frac{-\sum\left(\bar{x}^{\prime}\right)}{\left|\bar{x}-\bar{x}^{\prime}\right|^{2}}\left(\bar{x}-\bar{x}^{\prime}\right) \\
& =-\frac{4 G}{c^{2}} \frac{D_{55}}{D_{o s}} \bar{\nabla}_{x}\left[\int d^{2} x^{\prime} \sum\left(\bar{x}^{\prime}\right) \ln \left|\bar{x}-\bar{x}^{\prime}\right|\right]
\end{aligned}
$$

The apparent deflection $\bar{\alpha}$ is the gradient of the lensing potential ψ

$$
\bar{\alpha}\left(\bar{\theta}_{I}\right)=\bar{\nabla}_{\theta_{I}} \psi\left(\theta_{I}\right), \psi\left(\theta_{I}\right)=\frac{1}{\pi} \int d^{2} \bar{\theta}_{L} \frac{\sum_{\substack{ \\\sum_{\text {chit }}\left(\bar{\theta}_{L}\right) \\ k\left(\bar{\theta}_{L}\right)}} \ln \left|\bar{\theta}_{I}-\bar{\theta}_{L}\right|}{}
$$

Convergence, shear
Consequence of $\bar{\alpha}=\bar{\nabla} \psi$:

- The deflection fielel is curl-free: $\bar{\nabla} \times \bar{\alpha}=\frac{\partial}{\partial x} \alpha_{y}-\frac{\partial}{\partial y} \alpha_{x}=0$
- The lensing potential deflection are defined by a Poisson-like equation

$$
\begin{aligned}
\nabla^{2} \psi=\bar{\nabla} \cdot \bar{\alpha} & =\nabla_{\theta}^{2}\left[\frac{1}{\pi} \cdot \int d^{2} \bar{\theta}^{\prime} k\left(\bar{\theta}^{\prime}\right) \ln \left|\bar{\theta}-\bar{\theta}^{\prime}\right|\right] \\
& =\frac{1}{\pi} \int d^{2} \bar{\theta}^{\prime} k\left(\theta^{\prime}\right) \cdot 2 \pi \delta^{2}\left(\bar{\theta}-\bar{\theta}^{\prime}\right) \\
& =2 k(\bar{\theta})=2 \Sigma(\bar{\theta}) / \sum_{\text {cir }}
\end{aligned}
$$

- Since $\bar{\theta}_{3}=\bar{\theta}_{I}-\alpha\left(\bar{\theta}_{I}\right)$, the Jacobian of the lensing map $\bar{\theta}_{I} \rightarrow \bar{\theta}_{S}$ an
be written as

$$
\begin{gathered}
A=\frac{d \bar{\theta}_{s}}{d \bar{\theta}_{I}}=\left(\begin{array}{cc}
1-k-\gamma_{1} & -\gamma_{2} \\
-\gamma_{2} & 1-k+\gamma_{1}
\end{array}\right) \\
2 k=\operatorname{Tr}_{r}(A)-2=-\left(\partial_{x}^{2} \psi+\partial_{y}^{2} \psi\right) \\
\gamma_{1}=-\left(\partial_{x}^{2} 4-\partial_{y}^{2} \psi\right) \\
\gamma_{2}=-2 \partial_{x} \partial_{y} \psi
\end{gathered}
$$

WL observables

Magnification:

$\bar{\theta}_{s}=\left(\begin{array}{cc}1-k & 0 \\ 0 & 1-k\end{array}\right) \bar{\theta}_{I} k$
Shear:
$\bar{\theta}_{s}=\left(\begin{array}{ccc}1-\gamma_{1} & 0 \\ 0 & 1+\gamma_{1}\end{array}\right) \bar{\theta}_{2}^{2} \gamma_{+}$.
Model fitting

$$
\begin{aligned}
& f \rightarrow(1+2 k) f_{i} \\
& r_{c} \rightarrow(1+k) r_{l},
\end{aligned}
$$

$e_{+}=e \cos 2 \theta \rightarrow e_{+}+2 \gamma_{+}$
$\bar{\Theta}_{s}=\left(\begin{array}{cc}1 & \gamma_{2} \\ -\gamma_{2} & 1\end{array}\right) \bar{\theta}_{2} \gamma_{x}$

$$
e_{x}=e \sin 2 \theta \rightarrow=e_{2} 2 \gamma_{x}
$$

$M_{+}=\int d x d y\left((x, y)\left(x^{2}-y^{2}\right) \rightarrow M_{+}+2 M_{f l_{+}}\right.$

Moments

$$
M_{r}=\frac{1}{\cos \alpha} \cos (x, y) \rightarrow M_{f}(1+2 k)
$$

$$
M_{+}=\int d x d y I(x, y)\left(x^{2}-y^{2}\right) \rightarrow M_{+}+2 M_{f} \gamma_{+}
$$

$$
M_{\mathrm{x}}=\int d x d y I(x, y)(2 x y) \rightarrow M_{\mathrm{x}}+2 M_{f} \gamma_{x}
$$

Shear is a "spin 2" quantity:
If the source is circular $(e=0)$, then an image will be elliptical.

$a, b=$ major/minor axes
$\beta=$ position angle of major

$$
e \equiv \frac{a^{2}-b^{2}}{a^{2}+b^{2}}
$$

$$
\begin{aligned}
& \left.e_{1} \text { (or } e_{+}\right) \equiv e \cdot \cos 2 \beta \\
& e_{2}\left(\text { or } e_{x}\right) \equiv e \cdot \sin 2 \beta
\end{aligned}
$$

Lensing sheer tums $e=0$ to $\left(e_{1}, e_{2}\right)=\left(2 \gamma_{1}, 2 \gamma_{2}\right)$
Coordinate rotations:
If a galaxy has $\left(e_{1}, e_{2}\right)$ in coordinates (x, y)
\ldots...and we have new coords (x^{\prime}, y^{\prime}) rotated ccu by ϕ
... Then the shape $\left(e_{1}^{\prime}, e_{2}^{\prime}\right)$ in new coards is

$$
\begin{aligned}
& \binom{e_{1}^{\prime}}{e_{2}^{\prime}}=\left(\begin{array}{cc}
\cos 2 \phi & \sin 2 \phi \\
-\sin 2 \phi & \cos 2 \phi
\end{array}\right)\binom{e_{1}}{e_{2}} \\
& - \text { or }- \\
& e_{1}^{\prime}+i e_{2}^{\prime}=\left(e_{1}+i e_{2}\right) \cdot \exp (-2 i \phi)
\end{aligned}
$$

\therefore same for γ_{1}, γ_{2}

[We need this eng. when figuring out the γ_{t} from the γ_{1} and γ_{2} of sources]

Shear and magnification are the second derivatives of lensing potential!
With the Born approximation we can calculate the lensing caused by a $3 d$ mass distribution $(\bar{\Theta}, X)$ viewed along X axis
(X is commoving distance to redshift z)

- We can add up the potential /deflections/shear/mag along the los, remembering $\Sigma=$ apd

$$
K=\sum_{\sum_{\text {cit }}} \Rightarrow K(\bar{\theta})=\int_{0}^{x_{S}} d x_{L} \frac{\rho\left(\bar{\theta}, x_{L}\right)}{\Sigma_{\text {crit }}}=\int_{0}^{X_{S}} \frac{H_{\pi} G}{C^{2} D_{0 S}} D_{0 L} D_{L S} \rho\left(\bar{\theta}, x_{L}\right) d X_{L} a
$$

Let's convert this into an integral aver redshift z, with $a=(1+z)^{-1}$.

$$
H(z)=\frac{1}{a} \cdot \frac{d a}{d t} \Rightarrow d t=\frac{1}{a H} \cdot d(1+z)^{-1}=\frac{1}{a H}(1+z)^{-2} d z=\frac{a}{H} d z
$$

The distance $X(z)$ has $d X=\frac{c \cdot d t}{a}=\frac{c d z}{H}$ causes no deflection!
... with overdensity $\delta(\bar{\theta}, z)=\rho(\bar{\theta}, z) / \bar{e}(z)-1 \Rightarrow \rho(\bar{\theta}, z)=\delta(\bar{\theta}, z) \cdot \Omega_{m} \cdot \rho_{\text {crit }} \cdot(1+z)^{3}$ In cflat universe, $D_{O S}=X_{S} a_{S}, D_{O L}=X_{L} a_{L}, D_{L S}=\left(X_{S}-X_{L}\right) a_{S}$

$$
\begin{aligned}
K(\bar{\theta}) & =\frac{H \pi \xi_{L} \Omega_{n} n}{2 c} \cdot \frac{3 H_{0}^{2}}{\delta \pi} \cdot \int_{0}^{z_{S}} d z_{L} \frac{X_{L}\left(X_{S}-X_{L}\right)}{X_{S}} \cdot \delta(\bar{\theta}, z) \cdot \frac{(1+z)^{2}}{H} \cdot a_{L} \\
& =\int_{0}^{z_{s}} d z_{i} \delta\left(\bar{\theta}, z_{L}\right) \cdot \underbrace{\frac{3 H_{0}^{2} \Omega_{m}}{2 c} \cdot \frac{X_{L}\left(X_{S} \cdot X_{L}\right)}{X_{S}} \frac{1}{H a}}_{\text {"lensing kernel" }}
\end{aligned}
$$

Wonderful weak lensing math

$$
\begin{aligned}
& K(\bar{\theta})=\int_{c}^{z_{S}} d z_{L} \delta\left(\bar{\theta}, z_{L}\right) \cdot W\left(z_{s}, z_{L}\right), W=\frac{3 H_{0}^{2} \Omega_{m}}{2 c} \cdot \frac{x_{L}\left(x_{-} \cdot x_{L}\right)}{x_{s}} \frac{1}{H a_{L}} \\
& \nabla^{2} \psi=2 k \\
& \bar{\alpha}=\bar{\nabla} \psi, \quad \gamma_{1}=-\left(\partial_{x}^{2}-\partial_{y}^{2}\right) \psi \quad \gamma_{2}=-\left(2 \partial_{x} \partial_{y}\right) \psi \\
& \bar{\nabla} \times \bar{\alpha}=0
\end{aligned}
$$

- Knowing any one of $K, \bar{\alpha},\left(\gamma_{1}, \gamma_{2}\right)$ or ψ we can get the others!

Easiest to see in Fourier space: if $\psi(\bar{\theta})=\int d^{2} l \tilde{\psi}(\bar{l}) e^{i \bar{l} \cdot \bar{\theta}}$ then $\quad \tilde{K}(\bar{l})=-\left(l_{x}^{2}+l_{y}^{2}\right) \tilde{\psi}(\bar{l}) \quad \tilde{\gamma}_{1}=-\left(l_{x}^{2}-l_{y}^{2}\right) \tilde{\psi}(\bar{l}), \tilde{\gamma}_{2}(\bar{l})=-2 l_{x} l_{y} \tilde{\psi}(\bar{l})$

Measure γ pattern, get a mass map!!

- γ_{1}, γ_{2} have a consistency relation because they are different $2^{n \partial}$ derivs of the same ψ

$$
2 \partial_{x} \partial_{y} \gamma_{1}=\left(\partial_{x}^{2}-\partial_{y}^{2}\right) \gamma_{2}
$$

\Rightarrow The shear field is pure "E mode", its "B mole" must be zero.

This can happen

$$
\left\langle\gamma_{t}\right\rangle\langle 0
$$

This carnot happen $-\left\langle\gamma_{>}\right\rangle=0$

(B. Jain)

Projected mass map

Gravitational shear map

"E mode"

Foreground mass sinusoid produces ellipticity pattern at the same k-vector

Perpendicular/along the wave vector

2 -point functions of lensing
Using our $\quad K(\bar{\theta})=\int_{0}^{z_{s}} d z_{L} \delta\left(\bar{\theta}, \bar{z}_{L}\right) W\left(z_{L}, z_{s}\right)$
the Limber approximation tells us that the power spectrum of WL (shear or mag) will be

$$
P_{\uparrow}(l)=\int_{0}^{z_{S}} d z_{L} \cdot P_{\delta}\left(k=l / x_{L}, z_{L}\right) \cdot \bar{W}^{2}\left(z_{L}, z_{S}\right) \cdot \frac{H\left(z_{L}\right)}{x_{L}^{2}}
$$

measure this compare to this cosmological theory
Equivalently - measure z-point correlations ξ of the shear Because shear hay 2 components, there are multiple possible ξ 's,

Galaxies are not intrinsically circular!

Intrinsic shape $\bar{e}_{I}=\left(e_{I, 1}, e_{I, 2}\right)$

$$
\left|e_{I}\right|=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}
$$

is cultered by applied shear $\bar{\gamma}$ roughly (not exactly) as

$$
\bar{e}_{o b s}=\bar{e}_{ \pm}+2 \bar{\gamma}
$$

... so the average shape of N galaxies is

$$
\left\langle\bar{e}_{o b s}\right\rangle=\left\langle\bar{e}_{I}\right\rangle+2 \bar{\gamma}=2 \bar{\gamma}
$$

avg intrinsic shape is zero in an isotropic universe!

If $\operatorname{Var}\left(e_{ \pm, 1}\right)=\operatorname{Var}\left(e_{I, 2}\right)=\sigma_{e}^{2}$, then we estimate
$\hat{\gamma_{1}}=\frac{\left\langle e_{\text {obs, }, 1}\right\rangle}{2} \pm \frac{\sigma_{e}}{2 \sqrt{N}}$, we like big $N!$

Typically $\sigma_{e}=0.3-0.4$

- RMS shear un $z \approx 1$ line of sight: 0.02
- If we want to measure shear (and mass) power to 1% accuracy we need $\sigma_{\gamma} \approx \frac{0.02}{100} \leqslant \frac{\sigma_{e}}{2 \sqrt{N}}$

$$
\Rightarrow \quad N \geqslant\left(\frac{\sigma_{e}}{2 \sigma_{r}}\right)^{2}=\left(\frac{0.4}{2 \times 0.0002}\right)^{2}=10^{6}
$$

... and this is optimistic for several reasons.
Weak lensing is a numbers game!

Fig．5．－Histograms of faint galaxy major axis alignments relative to the vector to the cluster center are binned（for ellipticities above 0．2）into four orientations：tangent $\left(90^{\circ}\right)$ ，radial $\left(0^{\circ}\right)$ ，and $\pm 45^{\circ}$ ．Only galaxies of 22－26 B ， mag are included．An excess number of blue galaxies are aligned orthogonal to the radius of the cluster center（tangent bin），due to the lens distortion．Blue （background）and red（cluster）galaxy alignments for the A1689 field are shown in Figs． $5 a$ and $5 b$ ，and for CL $1409+52$ in Figs． $5 c$ and $5 d$ ．Figure $5 e$ shows the faint blue galaxy alignment histogram for the sum of 11 similar high－latitude comparison fields with no foreground clusters．

Tyson，Val lek，产 Weak 1990
Excess tangent alignment around massive clusters
≈ 300 galaxies in（blue）background

$$
\text { Single } \leq 1 M_{\text {pix }} C C D
$$

Wittman et al 2000
First detection (w/2 others) of
"cosmic shear" correlations in random fields
10^{5} galaxies,
$1.5 \mathrm{deg}^{2}$
16 Mix Camera

Jarvis et al 2006

$$
\begin{aligned}
& \hline 2 \times 10^{6} \text { gglaxieg } \\
& 75 \mathrm{deg}^{2} \\
& 16 \mathrm{Mpix} \rightarrow 64 \mathrm{Mpix}
\end{aligned}
$$

Kilbinger et al 2013 , CFHTLens

Figure 6. The measured shear correlation functions ξ_{+}(black squares) and ξ_{-}(blue circles), combined from all four Wide patches. The error bars correspond to the total covariance diagonal. Negative values are shown as thin points with dotted error bars. The lines are the theoretical prediction using the WMAP7 best-fitting cosmology and the non-linear model described in Section 4.3. The data points and error bars are listed in Table B1.
$\frac{4 \times 10^{6} \text { galaxies }}{154 \mathrm{dleg}^{2}}$
340 Mix camera

Amon et al zozz
Dark Energy Survey Year?
10^{8} galaxies

$$
4200 \mathrm{deg}^{2}
$$

Shear-shear correlationy amony 4 reclshifft bins.
500 Mpix camera

See also:

- Kilo-Degree Survey
- Hyper Suprime Cam Survey All workniy on finc (analyses.
- LSST: $\approx 10^{9}$ galowirs!
$=18,000 \mathrm{sq}$ cleg
2 Gpix camera
- Euclic (EsO)
- Romar (Nasa) space - besed surveys.

Measuring weak lensing
For a truly elliptical-sheped gatexy, we have clecr clefintions of $a \leqslant b$ for a chasen isophate

$$
e=\frac{\frac{a^{2}-b^{2}}{a^{2}+b^{2}},}{}, e_{1}=e \cdot \begin{aligned}
& \cos 2 \beta \\
& \sin 2 \beta
\end{aligned}
$$

(1) ... and we know $\left\langle e_{1}\right\rangle=\left\langle e_{2}\right\rangle=0$ in absence of lensing
(2) … and we know exactly how WL $\gamma_{1}, \gamma_{2}, K$ will affect e_{1}, e_{2}, and $r^{2}=a^{2}+b^{2}$.

PROBLEM \#
For a not-elliptical galoxy, how would we define e_{1}, e_{2}, r^{2} such that (1) and (3) hold? Here's a solution: for galexy with brightness clistribution $I(x, y)$, define

$$
\begin{aligned}
& M_{x} \equiv \int d^{2} x\left(x-x_{0}\right) I(x, y) \\
& M_{1} \equiv "\left(y-y_{0}\right) \\
& \left.\begin{array}{l}
M_{x x} \\
M_{x y} \\
M_{y y}
\end{array}\right\} \equiv \int d^{2} x\left\{\begin{array}{l}
\left(x-x_{0}\right)^{2} \\
\left(x-x_{0}\right)\left(y-y_{0}\right) \\
\left(y-y_{0}\right)^{2}
\end{array}\right\} I(x, y) \\
& \text { flux }=\int d^{2} x I(x, y) \\
& \text { (1) Find } x_{0}, y_{0} \text { such thet } M_{x}=M_{y}=0 \\
& \text { (2) Define } \\
& e_{1}=\frac{M_{x x}-M_{y y}}{M_{x x}+M_{y y}} \\
& \text { These } \\
& \text { have same } \\
& \text { (1) } \\
& \text { properties } \\
& \begin{array}{l}
\text { as trive } \\
\text { ellipses! }
\end{array}
\end{aligned}
$$

T10 see why:

$$
\text { Recall } A=\frac{d \bar{\theta}_{s}}{d \bar{\theta}_{I}}=\left(\begin{array}{cc}
1-k-\gamma_{1} & -\gamma_{2} \\
-\gamma_{2} & 1-k+\gamma_{1}
\end{array}\right)
$$

- set $x_{0}, y_{0}=0$ for both tensed unlensed

$$
\begin{aligned}
& \binom{x_{I}}{y_{I}}=A \cdot\binom{x_{s}}{y_{s}} \quad \text { across gsloxy } \\
& I_{\text {obs }}\left(x_{I}, y_{I}\right)=I_{\text {true }}\left(x_{S}, y_{S}\right) \\
& \left(\begin{array}{ll}
M_{x x} & M_{x y} \\
M_{x y} & M_{y y}
\end{array}\right)_{o b s}=\int d x_{I} I_{o b s}\left(\bar{x}_{I}\right)\left(\begin{array}{cc}
x_{I}^{2} & x_{I} y_{I} \\
x_{ \pm} y_{I} & y_{I}^{2}
\end{array}\right)=\int d^{2} x_{I} I_{o b s}\left(\bar{x}_{I}\right) \bar{x}_{I} \bar{x}_{I}^{T} \\
& =\int|A| d^{2} x_{s} \cdot I_{\text {true }}\left(\bar{x}_{s}\right) \cdot\left(A \bar{x}_{s}\right)\left(A \bar{x}_{s}\right)^{\top} \\
& =\left(1-k^{2}-\gamma^{2}\right) \cdot \int d^{2} x_{s} I_{\text {true }}\left(\bar{x}_{s}\right) \cdot A\left(\bar{x}_{s} \bar{x}_{s}^{\top}\right) A^{\top} \\
& =\left(1-k^{2}-\gamma^{2}\right) \cdot A\left(\begin{array}{ll}
M_{x y} & M_{x y} \\
M_{x y} & M_{y y}
\end{array}\right)_{\text {true }} \cdot A^{\top} \longrightarrow \begin{array}{l}
\text { linear transfounations of } \\
\text { moments }
\end{array}
\end{aligned}
$$

PRUBLEM \#2: We have to deserve a blurred version of the galaxy, which alters the size and shape!
Solution: need to know the point spread function (PSF) very accurately and remove its effect on $e^{\prime} s$. This is single for our $2^{\text {nd }}$ moments.

The observed image is the convolution of the true (lensecl) sky image by the PSF:

$$
\begin{aligned}
& I_{\text {obs }}(x, y)=\left[I_{\text {sly }} * P S F\right](x, y)=\int d^{2} \bar{x}^{\prime} I_{\text {sky }}\left(\bar{x}^{\prime}, \bar{y}^{\prime}\right) \cdot \operatorname{PSF}\left(\bar{x}-\bar{x}^{\prime}\right) \\
& M_{x x}^{\text {obs }}=\int d^{2} x I_{\text {obs }}(\bar{x}) x^{2}=\int d^{2} x d^{2} x^{\prime} x^{2} I_{\text {sky }}\left(\bar{x}^{\prime}, \bar{y}^{\prime}\right) \cdot \operatorname{PSF}\left(\bar{x}-\bar{x}^{\prime}\right) \quad \begin{array}{r}
\text { define } x^{\prime \prime}=x-x^{\prime} \\
x^{2}=\left(x^{\prime}+x^{\prime \prime}\right)^{2}
\end{array} \\
& =\int d^{2} x^{\prime} \int d^{2} x^{\prime \prime}\left(\left(x^{\prime}\right)^{2}+\left(x^{\prime \prime}\right)^{2}+2 x^{\prime} x^{\prime \prime}\right) I_{s k y}\left(x^{\prime}\right) \operatorname{PSF}\left(\bar{x}^{\prime \prime}\right) \\
& =\int d d^{2} \bar{x}^{\prime}\left(x^{\prime}\right)^{2} I_{\text {sk }}\left(x^{\prime}\right) \cdot \int d^{2} x^{\prime \prime} \operatorname{PSF}\left(x^{\prime \prime}\right)+\int d d^{2} \bar{x}^{\prime} I_{\text {kg }}\left(x^{\prime}\right) \cdot \int d^{2} x^{\prime \prime} \operatorname{PSF}\left(x^{\prime \prime}\right)\left(x^{\prime \prime}\right)^{2} \\
& =M_{x x}^{s k y}+f l l x \cdot M_{x x}^{P s F} \quad\left(\text { since } \int d^{2} x \operatorname{PSF}(x)=1\right) \\
& \frac{M_{x x}^{\text {syn }}}{f l u x}=\frac{M_{x x}^{\text {cbs }}}{f l u x}-M_{x x}^{P S F} \text { - weijust subtract sway the PSF moments! }
\end{aligned}
$$

PROBLEM \#3: Every image of the sky has noise in every pixel.
\Rightarrow moment measurements are noisy.
$\Rightarrow e_{1}, e_{2}, r^{2}$ measures are noisy and biased
Indeed our moments acquire infinite noise because $\int d^{2} x$ gees to $\pm \infty$!
Solution: use weighted moments
some function with finite area

$$
M_{x x} \equiv \int d^{2} \bar{x} I(\bar{x}) x^{2} \cdot \bar{W}(\bar{x})
$$

... alas, including W breaks the rice relations btw e_{1}, e_{2} and γ_{1}, γ_{2} and breaks the property that PSF simply adds to moments.
It took almost 25 years after Tyson, Valleys ?Wank's 1990 paper to develop a method that measure γ to I part per thousand accuracy from galaxy images in presence of PSF and noise!
see Bayesian Fourier Domain (BFD) methods (Bemstein et al 201b) Metecalibration, Metacletection (Huff, Sheldon, Mande) bum, "FPFS" (Li \ddagger Mkndelbsum 202z) Becker... Pipers 2020, 2017)

MORE PROBLEMS: SOLUTIONS

- The detector gives us a pixelized version of the in age
- Detectors are not stridly linear recorders of $I(\bar{x})$
- The PSF is a function of λ but detectors miry photons over range of λ into the image
- "Selection biases" exist - WL can make galaxies disappear from the sample!
- Blending - nearby galaxies can overlap. How do we know if this has happened? How do we reallocate the photons to the individual gelayiey?
- Redshifts - we need to know the z_{s} to make accurate theory predictions of γ. But it is infeasible to measure absorption /emission lines' λ^{\prime} s for 10^{8} galaxies.
Photometric redshifts. estimate z_{s} to low precision but (A bigtopic fits own!) very high accuracy using its broadband colors + knowledge of galaxies.

Figure 1. Cosmological constraints on the clustering amplitude, σ_{8}, (left) and S_{8} (right) with the matter density, Ω_{m} in flat- Λ CDM . The marginalised posterior contours (inner 68% and outer 95% credible intervals) are shown for the DES Y3 + KiDS-1000 Hybrid analysis in pink and Planck Collaboration (2020) CMB (TT,TE,EE+lowE) in blue. The yellow contours represent the Hybrid analysis of KiDS-1000 only and the green, of DES Y3 only.

