TeVeS

Dark Matter Models

Elisa G. M. Ferreira Kavli IPMU and University of Sao Paulo

Michigan Cosmology Summer School 2023

-Lecture 1: evidence and model building

- Evidence for dark matter
- Dark matter model building
- Mass bounds
- Landscape of models

Lecture 2: DM models

- DM models
 - Particle DM: WIMPS
 - Macroscopic DM: MACHOS, Primordial BHs
 - Wave DM

• What we know about DM • Pre-requisites for a DM model

• MOND

Recap - lecture 1

Evidences for dark matter - properties

Galaxy rotation curves

21 cm hydroge Velocity (km s⁻¹) Expected from 30,000 40,000 Distance (light years)

- Mass fraction
- Distribution

Large Scale Structure

Springel & others / Virgo Consortium

CMB/LSS Ratio of DM/collisional matter

Thermal history

Clusters

Mass fraction

Cluster collision

- Distribution

Distribution

Lensing

Strong lensing

- Mass fraction Distribution
- Weak lensing
- Distribution
- Shape
- Structure
- Micro lensing
- Mass fraction
- Smoothness

 Separation from collisional matter Self-interaction

Big Bang Nucleosynthesis

• Amount of baryons

DM builder's guide Pre-requisites for a dark matter candidate

- Cold or warm Thermal candidate: $m_{dm} \ge \text{keV}$ Has to be non-relativistic at BBN
- Reproduce large and small scale distribution Clusters like pressure-less fluid on large scales $k \lesssim 10 \,\mathrm{Mpc}^{-1}$ Clustering on scales smaller than $k \gtrsim 10 \,\mathrm{Mpc}^{-1}$ highly unconstrained
- Non-interacting or weakly interacting

Can have a small electromagnetic interaction. Bound < **milicharge**

Can have a **self interaction**. Bounds: σ/m_{dr}

Can interact via the **weak force**

• Abundance $\Omega_m = 0.308 \pm 0.012$ (*Planck 2018*)

If it is a particle, it has to be stable with lifetime of DM should be much greater than the age of the universe • Stable

Or produced cold by a non-thermal mechanism

- (Dark, colissionless)

$$m_m < 0.13 \,\mathrm{cm}^2/\mathrm{g}, \ \sigma/m_{dm} < 0.35 \,\mathrm{cm}^2/\mathrm{g}$$

Mass scale of dark matter

We can use observations of LSS and galaxies to put bounds in the "particle" physics properties, like mass and spin, of the DM candidate

80 orders of magnitude

Natural units (c = 1) $1\,\mathrm{kg} \rightarrow \sim 5 \times 10^{35}\,\mathrm{eV}$ $1 M_{\odot} \rightarrow \sim 10^{66} \,\mathrm{eV}$

There are ways to evade some of these bounds!

Landscape of dark matter models

What is DM? What is the nature of DM?

State of the "art"

MOND Modified Newtonian Dynamics

Empirical relation

$$a = \begin{cases} a_N^b, & a_N^b \gg a_0. \\ \sqrt{a_N^b a_0}, & a_N^b \ll a_0. \end{cases} \qquad a_0^b = \frac{G_N M_b}{r^2} \\ a_0 \simeq 1.2 \times 10^{-8} \,\mathrm{cm/s^2} \end{cases}$$

Curiosity: Baryons lead the dynamics!

Works really well to: (1) Fit galaxy rotation curves; (2) Explain the scaling relations

Modified theory of gravity BUT: Milgrom, 1983.

Relativistic extension: TeVeS, (BIMOND)

2020: "A new relativistic theory for Modified Newtonian Dynamics", C. Skordis, T. Zlosnik --- Agreement with CMB

 \sim

Clusters

Large scales

Lecture 1: evidence and model building

- Evidence for dark matter
- Dark matter model building
- Mass bounds
- Landscape of models

- What we
- Pre-requi

Lecture 2: DM models

- DM models
 - Particle DM: WIMPS, WIMPzillas
 - Macroscopic DM: MACHOS, Primordial BHs
 - Wave DM

know about DM

sites for a DM model

• MOND

* Biased review of the DM models

Landscape of dark matter models

What is DM? What is the nature of DM?

State of the "art"

Particle DM

			Particle DM			Macros	Macroscopic DM		
10^{-2}	$^{8}\mathrm{eV}$	Wave DM $10^{-22} \mathrm{eV}$	${ m eV}$	keV	${ m GeV}$	$\mathcal{O}(100\mathrm{TeV})$	M_{\odot}	М	
$DE^{10^{-6}}$	⁴ kg	10^{-58} kg	10^{-36} kg		$10^{-27} \mathrm{kg}$		$10^{30} \mathrm{kg}$		
	Not 100% DM	/o		Limit thermal i	relic	Unitary bound			
		Non-thermal			Thermally produc	ed			
	,	Bosons		-11	Fermions and boson	\$			

Iass

What is DM? What is the nature of DM?

WIMPS weakly interacting massive particles

WIMP - weakly interacting massive particle

- Most accepted candidate
- (Beyond standard model) massive particle
- "WIMP miracle"
 - Thermally produced
 - $m \sim weak scale \rightarrow abundance of DM$

	4		80 orders	of magnitud	е —	
$10^{-33}\mathrm{eV}$	$10^{-22} {\rm eV}$	eV	keV (GeV	$M_{ m pl}$	
DE	Ultra-light DM		"Light" DM	WIMP	Composite DM	Primo
Not DM	QCD axion		Limit thermal relic			

Credito: F. Iocco

WIMP miracle

A thermal relic with cross-section \sim weak interaction would freeze out with the \sim density of the obs. DM today

$$\Omega_{\chi} h^2 \simeq 0.1 \left(\frac{3 \times 10^{-9} \,\mathrm{GeV}^{-2}}{\langle \sigma v \rangle} \right)$$

$$\downarrow$$
Annihilation cross-section

So we can have the correct abundance today:

$$\langle \sigma v \rangle \simeq 3 \times 10^{-9} \,\text{GeV}^{-2} \simeq G_F \times \frac{v_{wimp}}{c}$$

Expected cross-section for the v

Therefore, if DM interacts through the weak force, we have the correct abundance of DM! Miracle!?

	4		— 80 orders	of magnitude	е —	
$10^{-33}\mathrm{eV}$	$10^{-22} {\rm eV}$	eV	keV	GeV	$M_{\rm pl}$	
DE	Ultra-light DM		"Light" DM	WIMP	Composite DM	Primo
Not DM	QCD axion		Limit thermal relic			

WIMP - weakly interacting massive particle

How can we measure it?

Credito: F. Iocco

+

	4		— 80 orders	of magnitude	9	
$10^{-33}{\rm eV}$	$10^{-22} {\rm eV}$	eV	keV (GeV	$M_{ m pl}$	
DE	Ultra-light DM		"Light" DM	WIMP	Composite DM	Primo
Not DM	QCD axion		Limit thermal relic			

Gravitationally Cosmological and astrophysical searches

WIMP - weakly interacting massive particle

How can we measure it?

Credito: F. Iocco

	*		— 80 orders o	of magnitude)	
$10^{-33}{\rm eV}$	$10^{-22} {\rm eV}$	eV	keV (GeV	$M_{ m pl}$	
DE	Ultra-light DM		"Light" DM	WIMP	Composite DM	Primo
Not DM	QCD axion		Limit thermal relic			

Gravitationally Cosmological and astrophysical searches

Direct detection:

+

- DM scattering against nuclei, recoil <u>Indirect detection</u>:

- Annihilation in astrophysical environment

- Observation of SM products of annihilation <u>Production at collider</u> (LHC)

WIMP - weakly interacting massive particle

Bounds

WIMP - weakly interacting massive particle

Bounds

HUGE experimental effort for discovery/bound Still not detected!

Supersymmetry

DM from supersymmetry

Lightest supersymmetric partner is stable

- Neutralino
- Gravitino
- Chargino
- Bino
- ...

Neutralino and chargino

	4		80 orders of	of magnitude	9	
$10^{-33}\mathrm{eV}$	$10^{-22} {\rm eV}$	eV	keV (GeV	$M_{ m pl}$	
DE	Ultra-light DM		"Light" DM	WIMP	Composite DM	Primo
Not DM	QCD axion		Limit thermal relic			

WINIPzillas

				Par	rticle DM		Macroscopic DM		
		Wave DM							
10^{-2}	$^{28}\mathrm{eV}$	$10^{-22} {\rm eV}$	eV	keV	GeV	$\mathcal{O}(100\mathrm{Te}$	V) M _{pl}	M_{\odot}	
10 ⁻⁶ DE	³⁴ kg	10^{-58} kg	$10^{-36} \mathrm{kg}$		$10^{-27} \mathrm{kg}$			10^{30} kg	
	Not 100% DM	//0		Limit thermal	relic	Unitary bound			
	Non-thermal				Thermally produce	ed	Non-thermal		
	Bosons			Fermions and bosons					

Mass ____

WIMPzillas

Not a lot of superheavy candidates between $\mathcal{O}(100)$ TeV – $\mathcal{O}(10^{40})$ eV

WIPMzillas: superheavy **particle**

Ref.: Kolb et al 1998

2 necessary conditions:

- Must be stable (Condition for being particle DM)
- Must not have been in equilibrium when it froze out (i.e., it is **not** _ a thermal relic), otherwise $\Omega_X h^2$ would be much larger than one
 - A sufficient condition for nonequilibrium is that the annihilation rate (per particle) must be smaller than the expansion rate: $n_X \sigma v < H$ (Condition for being non-thermal relic)
 - \Rightarrow Produced during inflation 10⁹ GeV 10¹⁶ GeV (GUT scale)

There are no experiments looking for WIMPzillas

Produced non-thermally!!

(Not subjected to the unitary bound)

(Size does matter)

 $M_{pl} \sim 10^{19} \,\mathrm{GeV}$

Macroscopic/composite DM

		Particle DM		Macrosco			
10-28 17	Wave DM 10^{-22} V	W	1	C-V	(100T-V)	М	
10 ²⁰ eV	10 ev <u>I</u> 10 ⁻⁵⁸ kg	ev 10 ⁻³⁶ kg	Ke V	10 ⁻²⁷ kg	0(10016V)	10 ³⁰ kg	Ν
DE			Limit		Unitory		
Not 10 DN	00% A		thermal	relic	bound		
	Non-therm:	al		Thermally produc	ced		
<u> </u>	Bosons			Fermions and boson	\$		

Composite DM

Dark atoms, (dark) glueballs, nuggets of baryons or other fermions ...

(an entire "SM" dark sector)

	80 orders of magnitude									
$10^{-33}{\rm eV}$	$10^{-22} {\rm eV}$	eV	keV	GeV	$M_{ m pl}$	M				
DE	Ultra-light DM		"Light" I	OM WIMP	Composite DM	Primordial				
Not DM	QCD		Limit thermal rel	ic						

Atomic dark matter

Ref.: Kaplan et al 2009 Cyr-Racine et al 2012

MACHOS massive compact halo object

	80 orders of magnitude								
$10^{-33}\mathrm{eV}$	$10^{-22}\mathrm{eV}$	eV	keV	G	eV	$M_{ m pl}$	M		
DE	Ultra-light DM		"Light"	"DM	WIMP	Composite DM	Primordia		
Not DM	QCD		Limit	rolic					

We know BHs exist!

Star motion

Nobel prize (2021)

Event Horizon Telescope

Gravitational waves

Crédito: ESO

Credito:

 $M_{\odot} \sim 2 \times 10^{30} \,\mathrm{kg}$

	4		80 orders of magnitude						
$10^{-33}{\rm eV}$	$10^{-22} {\rm eV}$	eV	keV	G	eV	$M_{ m pl}$		M_{\odot}	Mass
DE	Ultra-light DM		"Light	" DM	WIMP	Composite DM	Prin	ordial BHs	
Not DM	QCD axion		Limit thermal	relic					

- BHS formed at early times
- BHs with mass $10^{-15} M_{\odot} \leq M_{\text{PBH}} \leq \mathcal{O}(1) M_{\odot}$
- Can explain part or all of the DM

Formation mechanisms

• Bubble collision (Hawking et al, 1982)

1st order phase transitions occur via the nucleation of bubbles

PBHs can form when bubbles collide (but bubble formation rate must be fine tuned)

• Cosmic string loops (Hawking 1987)

Cosmic strings:1d topological defects formed during symmetry breaking phase transition

Small probability that loop will get into configuration of size ~ Schwarzschild radius

• Collapse of density perturbations (Carr and Hawking 1974)

 \Rightarrow PBH mass ~ order horizon mass at phase transition.

Loops © Cambridge cosmology group

 \Rightarrow hence collapse to from a PBH with mass of order the horizon mass at that time

M_{\odot}	Mass
ordial BHs	
	\mathcal{I}

<u>Formation mechanisms:</u> collapse of large density perturbations (during radiation domination) (0th order argument) Typical

If a density perturbation is sufficiently large (at Hubble radius entry) it can collapse to form a PBH

Threshold for
formation:
$$\delta_{hc} \ge \delta_c \sim w = \frac{P}{\rho} = \frac{1}{3}$$

 \Rightarrow Form a **PBH** with $M_{\text{PBH}} \sim M_{R_H}$

$$M_{R_H} = \frac{4\pi}{3}\rho(cH^{-1}) = \frac{c^3}{2GH} = \frac{tc^3}{G} \sim 10^{15} \,\mathrm{g}\left(\frac{t}{10^{-23} \,\mathrm{s}}\right) \sim M_{\odot}\left(\frac{t}{10^{-6} \,\mathrm{s}}\right) \sim M_{\rm PBH}$$
Mass contained in the Hubble radius

	4		80 orders of magnitude						
$10^{-33}\mathrm{eV}$	$10^{-22} {\rm eV}$	eV	keV	Ge	eV	$M_{ m pl}$			lass
DE	Ultra-light DM		"Ligh	t" DM	WIMP	Composite DM	Primo	ordial BHs	-)
Not DM	QCD axion		Limit therma	l relic					

Kawasaki et al 2012

* Here not in natural units!!

Initial PBH mass fraction: fraction of universe in regions dense enough to form PBHs (0th order argument)

$$\beta(M) = \left(\frac{\rho_{\text{PBH}}}{\rho_{tot}}\right)_{i} \sim \int_{\delta_{c}}^{\infty} P(\delta(M_{R_{H}})) d\delta(M_{R_{H}}) \sim \sigma(M_{R_{H}}) \exp\left(-\frac{\delta_{c}^{2}}{2\sigma^{2}(M_{R_{H}})}\right)$$

$$\downarrow \text{density contrast,} \text{smoothed on a} \text{scale } R_{H}$$
Assuming Gaussian prob. distribution

	4	80 orders of magnitude							
$10^{-33}{\rm eV}$	$10^{-22} {\rm eV}$	eV	keV	Gev	V	$M_{ m pl}$			Mass
DE	Ultra-light DM		"Light	"DM	WIMP	Composite DM	Prime	ordial BHs	-)
Not DM	QCD axion		Limit thermal	relic					

* Here not in natural units!!

PBH abundance

Since PBHs are matter, during radiation domination the fraction of energy in PBHs grows

 $\beta(M) \sim 10^{-9} f_{\rm PBH} \left(\frac{M}{M_{\odot}}\right)^{1/2}$ The **PBH** initial mass fraction, β , and fraction of DM in form of PBH are initial mass fraction must be small, but non-negligible. \Rightarrow related by:

	4	80 orders of magnitude						
$10^{-33}{\rm eV}$	$10^{-22} {\rm eV}$	eV	keV	G	eV	$M_{ m pl}$		M _☉ Mass
DE	Ultra-light DM		"Ligh	t" DM	WIMP	Composite DM	Primor	dial BHs
Not DM	QCD axion		Limit therma	l relic				

 $\log a$

PBH abundance

 $\beta(M) \sim 10^{-9}$ The PBH initial mass fraction, β , and fraction of DM in form of PBH are initial mass fraction must be small, but non-negligible. \Rightarrow related by:

Initial perturbation:

Can the (nearly) scale-invariant primordial pert from early times (same that is the seed to LSS) source PBH and give a sizeable initial fraction? NO!

	4	80 orders of magnitude					
$10^{-33}{\rm eV}$	$10^{-22} {\rm eV}$	eV	keV	GeV	$M_{ m pl}$	M_{\odot} Mass	
DE	Ultra-light DM		"Light"	DM WIM	P Composite DM	Primordial BHs	
Not DM	QCD axion		Limit thermal 1	relic			

$$f_{\rm PBH} \left(\frac{M}{M_{\odot}}\right)^{1/2}$$

PBH abundance

 $\beta(M) \sim 10^{-9}$ The PBH initial mass fraction, β , and fraction of DM in form of PBH are initial mass fraction must be small, but non-negligible. \Rightarrow related by:

Initial perturbation:

Can the (nearly) scale-invariant primordial pert from early times (same that is the seed to LSS) source PBH and give a sizeable initial fraction? NO!

	*	80 orders of magnitude						
$10^{-33}{\rm eV}$	$10^{-22} {\rm eV}$	eV	keV	Ge	eV	$M_{ m pl}$		M_{\odot} Mass
DE	Ultra-light DM		"Light	"DM	WIMP	Composite DM	Primor	rdial BHs
Not DM	QCD axion		Limit thermal	relic				

$$f_{\rm PBH} \left(\frac{M}{M_{\odot}}\right)^{1/2}$$

To form an interesting number of PBHs amplitude of primordial perturbations must be 2-3 orders of larger on small scales than on cosmological scales and fine-tuned.

Primordial Black Holes

On cosmological scales PBH DM would behave like particle DM, however on galactic and smaller scales its granularity can have *observable consequences*.

	4	80 orders of magnitude						
$10^{-33}{\rm eV}$	$10^{-22}{\rm eV}$	eV	keV	C	eV.	$M_{ m pl}$	Λ	M_{\odot} Mass
DE	Ultra-light DM		"Lig	ght" DM	WIMP	Composite DM	Primordia	al BHs
Not DM	QCD axion		Limit therm	nal relic				

Primordial Black Holes

Bounds

$$M_{\odot} \sim 2 \times 10^{30} \,\mathrm{kg}$$

	4	80 orders of magnitude						*	
$10^{-33}\mathrm{eV}$	$10^{-22} {\rm eV}$	eV	keV	G	eV	$M_{ m pl}$		M_{\odot}	Mass
DE	Ultra-light DM		"Ligh	it" DM	WIMP	Composite DM	Prim	ordial BHs	
Not DM	QCD axion		Limit therma	ıl relic					

Notebook to plot the PBH bounds: <u>https://github.com/bradkav/PBHbounds</u>

Primordial Black Holes

$$M_{\odot} \sim 2 \times 10^{30} \, \mathrm{kg}$$

	•	80 orders of magnitude				
$10^{-33}{\rm eV}$	$10^{-22}\mathrm{eV}$	eV	keV	GeV	$M_{ m pl}$	M_{\odot} Mass
DE	Ultra-light DM		"Light"	DM WIMP	Composite DM	Primordial BHs
Not DM	QCD axion		Limit thermal 1	relic		

Wave DM

	Particle DM						copic DM
10^{-2}	$^{28}\mathrm{eV}$	Wave DM $10^{-22} \mathrm{eV}$	$_{\rm eV}$	keV	${ m GeV}$	$\mathcal{O}(100 \mathrm{TeV})$	M_{\odot} .
DE ¹⁰⁻⁶	³⁴ kg	10^{-58} kg	10^{-36} kg		10^{-27} kg		10 ³⁰ kg
_	Not 100% DM	6		Limit thermal	relic	Unitary bound	
		Non-thermal			Thermally produ	ced	
	,	Bosons			Fermions and boson	13	

Mass

Ultra-light dark matter

Ultra-light dark matter

Ultra-light candidate, cold

Lightest possible candidate for DM

QCD

axion

 $10^{-22}\,\mathrm{eV}$ Ultra-light DM

Bosons (scalar fields)

Non-thermally produced

Wave-Particle duality

All matter exhibits a wave behaviour

$$\lambda_{dB} \sim \frac{1}{mv}$$

 $\lambda_{dB} \sim 1/\sqrt{2\pi m k_B T}$

	Mass (kg)	Speed (m/s)	$\lambda_{dB}(\mathbf{m})$
Accelerated e-	9.1×10^{-31}	5.9×10^{6}	1.2×10^{-10}
Golf ball	0.045	220	4.8×10^{-30}

De Broglie 1924

 $\lambda_{dB}^{ULDM} \sim \text{pc} - \text{kpc}$

Ultra-light dark matter

Ultra-light candidate

Large scales: DM behaves like standard particle DM (CDM).

DM: particles $d \gg \lambda_{dB}$

Large $\lambda_{\rm dB} \sim 1/mv$

 $10^{-25} \,\mathrm{eV} \lesssim m \lesssim \mathrm{eV} \qquad \lambda_{dB}^{ULDM} \sim \mathrm{pc} - \mathrm{kpc}$

How light is ultra-light?

Behave as wave on galactic scales:

• λ_{dB} must be smaller than the halo

 $\lambda_{\rm dB} < R_{\rm halo}$

 $\implies m \gtrsim 10^{-25} \,\mathrm{eV}$

"Ultra-light dark matter", EF, 2020.

• λ_{dB} overlap to be of halo size

$$\lambda_b \sim \frac{1}{mv} \ge d \sim \left(\frac{m}{\rho_{vir}}\right)^{\frac{1}{3}}$$
$$\implies m \le 2\text{eV}$$

$${
m eV} \lesssim m \lesssim {
m eV}$$

 $\lambda_{dB}^{ULDM} \sim \text{pc} - \text{kpc}$

• Natural candidate for a light scalar field is a pseudo-Nambu Goldstone boson

Known PNGB: <u>OCD axion</u>

(Peccei and Quinn 1977; Weinberg 1978; Wilczek 1978)

Axion-like particles

Axions or Axion like particles (ALP)

symmetry, and are described by the complex field: $\Psi = v e^{i\phi/f_a}$

$$v_{0,ssb} = f_a / \sqrt{2}$$

Non-perturbative effects (from string theory or instatons) induce a potential:

$$V(\phi) = \Lambda_a^4 \left[1 - \cos(\phi/f_a)\right] \xrightarrow[\phi \ll f_a]{} \frac{1}{2} m^2 \phi^2 + \frac{g}{4} \phi^4 + \cdots$$

(breaking of an approximate symmetry)

Candidate for DM

Axions and ALPs are pseudo Nambu Goldstone bosons from the spontaneous symmetry breaking of a $U_{PQ}(1)$ (U(1))

$$\rightarrow \phi \rightarrow \phi + c$$

• Natural candidate for a light scalar field is a pseudo-Nambu Goldstone boson

Known PNGB: OCD axion

(Peccei and Quinn 1977; Weinberg 1978; Wilczek 1978)

Axion-like particles or ultra-light axions:

- ALPs expected in string theory
- Can generate PNGB that are ultra-light
- Non-thermal mechanism (e.g. mis-alignement)

Candidate for DM

(Arvanitaki et al., Svrcek, Witten)

- Formation mechanism: needs to have a relic abundance that gives the correct DM abundance

$$\Omega_{axion} \sim 0.15 \left(\frac{f_a}{10^{12} \,\text{GeV}} \right)^{7/6} \theta_1^2$$
$$\Omega_{ALP} \sim 0.1 \left(\frac{f_a}{10^{17} \,\text{GeV}} \right)^2 \left(\frac{m}{10^{-22} \,\text{eV}} \right)$$

L. Hui

• Natural candidate for a light scalar field is a pseudo-Nambu Goldstone boson

Known PNGB: <u>QCD axion</u>

(Peccei and Quinn 1977; Weinberg 1978; Wilczek 1978)

Axion-like particles or ultra-light axions:

- ALPs expected in string theory
- Can generate PNGB that are ultra-light

Spin-0: Non-thermal mechanism (e.g. misalignement)

<u>Vector FDM</u>: challenging in the ultra-light regime (e.g. from misalignment requires non-minimal couplings to Ricci scalar -> viol. of unitarity long. graviton-photon scattering; oscillating Higgs or oscillating misaligned axion - resonant production - choices for couplings for right abundance) <u>Spin 2 FDM</u>: (e.g bigravity)

Candidate for DM

(Arvanitaki et al., Svrcek, Witten)

Formation mechanism: needs to have a relic abundance that gives the correct DM abundance

• Natural candidate for a light scalar field is a pseudo-Nambu Goldstone boson

Known PNGB: <u>QCD axion</u>

(Peccei and Quinn 1977; Weinberg 1978; Wilczek 1978)

Axion-like particles or ultra-light axions:

- ALPs expected in string theory
- Can generate PNGB that are ultra-light

Spin-0: Non-thermal mechanism (e.g. misalignement)

<u>Vector FDM</u>: challenging in the ultra-light regime (e.g. from misalignment requires non-minimal couplings to Ricci scalar -> viol. of unitarity long. graviton-photon scattering; oscillating Higgs or oscillating misaligned axion - resonant production - choices for couplings for right abundance) <u>Spin 2 FDM</u>: (e.g bigravity)

Candidate for DM

(Arvanitaki et al., Svrcek, Witten)

Formation mechanism: needs to have a relic abundance that gives the correct DM abundance

Many extensions of the Standard Model predict additional massive bosons

Massive Bosons (integer spin)	
Higgs, H	Moduli Dilator
(spin	Scalars 0, CP e

Ref.: Chadha-Day et al 2022

How to search for axions/ALPs?

+

axion

eV

Gravitationally Cosmological and astrophysical searches

How to search for axions/ALPs?

Cosmological and astrophysical searches

Gravitational

Indirect detection

"Direct detection" Axion/ALPs experiments

Interactions with the SM

Cosmological signatures

Ultra-light Dark Matter -classes

3 classes:

DOFs

Axion and ALP (axion like particles)

$$i\dot{\psi} = \left(-\frac{1}{2m}\nabla^2 + \frac{g}{8m^2}|\psi|^2 - m\Phi\right)$$

 \longrightarrow Connection with condensed matter and particle physics!

Self Interacting FDM (SIFDM)

8

 ψ

- Presence of (weakly) self-interaction - Condensation under gravity + SI

DM Superfluid

- Forms a superfluid in galaxies - MOND behaviour interior of galaxies

$$\mathcal{L} = P(X)$$

"Ultra-light dark matter", E.Ferreira, 2020. The Astronomy and Astrophysics Review.

Fuzzy dark matter

Self interacting fuzzy dark matter

Fuzzy dark matter

Hu W, Barkana R, Gruzinov A (2000 a,b) (Reviews: EF (2021), J. Niemeyer (2019), L. Hui (2021))

Idea:

$$m_{\rm fdm} \sim 10^{-22} \,\mathrm{eV}$$

address the small scale problems+ rich phenom.

Fuzzy dark matter

Hu W, Barkana R, Gruzinov A (2000 a,b) (Reviews: EF (2021), J. Niemeyer (2019), L. Hui (2021))

Wave DM Ultra-light axions

Focus in spin 0 particles here!

(Some of the grav. phenom. is carried for vectors, for example)

- Spin 0 FDM
- Spin 1 Vector FDM
- Higher spin FDM

Cosmological evolution

Structure formation - non-relativistic regime

Evolution on small scales: take non-relativistic regime of the theory, relevant for structure formation.

<u>Schrödinger-Poisson system</u> : describe the FDM and the SIFDM

$$\begin{bmatrix} i\dot{\psi} = \left(-\frac{1}{2m}\nabla^2 + \frac{g}{8m^2}|\psi|^2 - m\Phi\right)\psi\\ \nabla^2\Phi = 4\pi G(m|\psi|^2 - \bar{\rho}) \end{bmatrix}$$

Schrödinger equation (Gross-Pitaevskii)

Poisson equation

 $g = 0 \longrightarrow$ FDM $g \neq 0$ SIFDM

Fundamentally different than CDM/WDM/SIDM!

Structure formation - non-relativistic regime

Evolution on small scales: take non-relativistic regime of the theory, relevant for structure formation.

<u>Schrödinger-Poisson system</u> : describe the FDM and the SIFDM

$$\begin{bmatrix} i\dot{\psi} = \left(-\frac{1}{2m}\nabla^2 + \frac{g}{8m^2}|\psi|^2 - m\Phi\right)\psi\\ \nabla^2\Phi = 4\pi G(m|\psi|^2 - \bar{\rho}) \end{bmatrix}$$

Schrödinger equation (Gross-Pitaevskii)

Poisson equation

 $g = 0 \longrightarrow$ FDM $g \neq 0$ SIFDM

Fundamentally different than CDM/WDM/SIDM!

ION

Structure formation - perturbation and stability

Competition between gravity and pressure (quantum pressure and interaction)

ATTRACTIVE

g < 0

REPULSIVE

g > 0

Structure formation - perturbation and stability

Finite clustering scale - no structure formation on small scales

For attractive interactions can only form localized clumps (solitons)

QCD axion: $m \sim 10^{-5} \,\mathrm{eV}$ $\lambda_a \sim -10^{-48} \longrightarrow l_{soliton} \sim 10^{-5} \,\mathrm{kpc}$

RICH PHENOMENOLOGY ON SMALL SCALES

* Focus only in gravitational signatures

RICH PHENOMENOLOGY ON SMALL SCALES

Suppression of small structures

Finite Jeans length $\lambda_{\rm J}$ or $\lambda_{\rm attr}$, $\lambda_{\rm rep}$

FDM: 256³, $mc^2 = 1.75 \times 10^{-23} \text{ eV}$, z = 0.00 $v_{\text{max}} = 88.1 \text{ km/s}$

CDM: 256³, *z* = 0.00

S. May et al. 2021

No small scale structure

Suppression of small structures

Finite Jeans length $\lambda_{\rm J}$ or $\lambda_{\rm attr}$, $\lambda_{\rm rep}$

POWER SPECTRUM

Suppresses small scale structure

(sub) HALO MASS FUNCTION

RICH PHENOMENOLOGY ON SMALL SCALES

Phenomenology Formation of cores

$$m = 10^{-22} \,\mathrm{eV} \qquad N = 512^3$$

NON-LINEAR evolution: need simulations

Phenomenology Formation of cores

From simulations Schive et al. 2014, fitting function: FDM

$$\rho_c \simeq \frac{1.9 \times 10^{-2}}{[1 + 0.091 \, (r/R_{1/2,c})^2]^8} \, \left(\frac{m}{10^{-22} \, \text{eV}}\right)^{-2} \left(\frac{r_c}{\text{kpc}}\right)^{-4} M$$
$$r_c \simeq 0.16 \, \left(\frac{m}{10^{-22} \, \text{eV}}\right)^{-1} \left(\frac{M}{10^{12} \, M_{\odot}}\right)^{-1/4}$$

Relations used to compare with observations

RICH PHENOMENOLOGY ON SMALL SCALES

Wave interference: granules and vortices

Order one fluctuations in density \longrightarrow

Destructive interference

Hard to observe!

Vector, higher spin or multicomponent FDM

ULDM or ULA are a coherent wave - same frequency and constant phase difference

Multiple coherent waves

Interference patterns

Multiple FDM or VFDM (or higher spin s FDM) *attenuates* the granule amplitude by

$$\frac{[\delta\rho/\rho]_{\rm nfdm,s}}{[\delta\rho/\rho]_{\rm fdm}} \propto \frac{1}{\sqrt{(2s+1)}} = \frac{1}{\sqrt{N}}$$

Amin et al 2022 Vector (and higher-spin) FDM (Vector FDM = 3 x same mass FDM (spin 0)) Multicomponent FDM Gonseca et al 2023

(Amin et al 2022)

Phenomenology Vortices

Vortices are sites where the fluid velocity has a non-vanisl

Two ways:

- regions where the density vanishes
- transfer of angular momentum (superfluids only)

Fuzzy DM

Interference of waves leads to vortices - where there is destructive interference

General defet in 3D

$$\mathcal{C} = \frac{1}{m} \oint_{\partial A} \mathrm{d}\theta = \frac{2\pi n}{m}$$

$$(\psi \equiv \sqrt{\rho/m} e^{i\theta} \text{ and } \mathbf{v} \equiv \nabla \theta / \dot{\rho} + \nabla \cdot (\rho \mathbf{v}) = 0$$
$$\dot{\mathbf{v}} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{m} \left(V_{grav} - P_{int} - \frac{1}{2m} \frac{\nabla^2 \sqrt{\rho}}{\sqrt{\rho}} \right)$$

Vel. field is a gradient flow \longrightarrow irrotational fluid, no vorticity

Self-interacting Fuzzy DM

Superfluid cannot rotate uniformly. If the superfluid rotates faster than the critical vel., network of vortices are formed.

EF, 2020

RICH PHENOMENOLOGY ON SMALL SCALES

Relaxation, oscillation, friction, and heating

Relaxation, oscillation, friction, and heating

Globular cluster

System (star) gains energy

System (GC or BH) loses energy

Observational implications and constraints

Galaxies

Dwarfs

Stellar stream

Globular clusters

CMB+LSS

Springel & others / Virgo Consortium

Clusters

CC BY 4.0

NASA and ESA

"Ultra-light dark matter", E.F., 2020

Current status Fuzzy Dark Matter - bounds on the mass

Caner et al: FDM at most 10% for $10^{-21} \,\mathrm{eV} < m < 10^{-17} \,\mathrm{eV}$

Sweet spot for solving small scale problems

These models can be constrained

BUT: - systematic effects!! - dynamics of FDM not fully understood.

Need:

- Observations
- Improve sims
- New observables _
- New probes

Axions and ALPs interact with the standard model particles

Minimal definition: New light pseudoscalar, with coupling to photons and/or derivative couplings to fermions

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{1}{2} m_a^2 a^2 - \frac{g_{a\gamma}}{4} a.$$

 $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ $\widetilde{F}^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\alpha\beta} F_{\alpha\beta}$ $\mathbf{E} = -\nabla A_0 - \dot{\mathbf{A}}$ $\mathbf{B} = \nabla \times \mathbf{A}$

 $aF_{\mu
u}\widetilde{F}^{\mu
u} + \partial_{\mu}a\sum_{\psi}rac{g_{a\psi}}{2m_{\psi}}\left(\bar{\psi}\gamma^{\mu}\gamma^{5}\psi
ight)$

Not considering here

+ a few model-dependent assumptions

Axions and ALPs interact with the standard model particles

<u>Photon</u> - Axion electrodynamics

$$\mathcal{L}_{ALP} = \frac{1}{2} \partial^{\mu} a \partial_{\mu} a - \frac{1}{2} m_a^2 a^2 - \frac{1}{4} g_{a\gamma\gamma} F_{\mu\nu} \tilde{F}_{\mu\nu} = \frac{1}{2} \partial^{\mu} a \partial_{\mu} a - \frac{1}{2} m_a^2 a^2 + g_{a\gamma\gamma} \mathbf{E} \cdot \mathbf{B} a$$

Photon-photon-ALP vertex with coupling constant $g_{a\gamma\gamma}$

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}$$
$$\widetilde{F}^{\mu\nu} = \frac{1}{2}\epsilon^{\mu\nu\alpha\beta}$$
$$\mathbf{E} = -\nabla A_{0} - \mathbf{B} = \nabla X$$

 $\gamma \rightarrow a$ conversion in the external magnetic field **B** (Primakoff effect)

Other diagrams...

Axions and ALPs interact with the standard model particles

<u>Photon</u> - Axion electrodynamics

$$\mathcal{L}_{ALP} = \frac{1}{2} \partial^{\mu} a \partial_{\mu} a - \frac{1}{2} m_a^2 a^2 - \frac{1}{4} g_{a\gamma\gamma} F_{\mu\nu} \tilde{F}_{\mu\nu} = \frac{1}{2} \partial^{\mu} a \partial_{\mu} a - \frac{1}{2} m_a^2 a^2 + g_{a\gamma\gamma} \mathbf{E} \cdot \mathbf{B} a$$

Photon-photon-ALP vertex with coupling constant $g_{a\gamma\gamma}$

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}$$
$$\widetilde{F}^{\mu\nu} = \frac{1}{2}\epsilon^{\mu\nu\alpha\beta}$$
$$\mathbf{E} = -\nabla A_{0} - \mathbf{B} = \nabla X$$

 $\gamma \rightarrow a$ conversion in the external magnetic field **B** (Primakoff effect)

Other diagrams...

Axions and ALPs interact with the standard model particles

Axion electrodynamics

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - J^{\mu} A_{\mu} - \frac{g_{a\gamma}}{4} F_{\mu\nu} \widetilde{F}^{\mu\nu} a$$

• We can interpret axion as the source of an effective current:

Maxwell's equations:

$$\nabla \cdot \mathbf{E} = \rho$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{B} = \frac{\partial \mathbf{E}}{\partial t} + \mathbf{J}$$

$$\nabla \times \mathbf{B} = \frac{\partial \mathbf{E}}{\partial t} + \mathbf{J} - g_{a\gamma} \left(\mathbf{E} \times \nabla a - \frac{\partial a}{\partial t} \mathbf{B} \right)$$

$$egin{aligned} F_{\mu
u} &= \partial_{\mu}A_{
u} - \partial_{
u} \ \widetilde{F}^{\mu
u} &= rac{1}{2}\epsilon^{\mu
ulphaeta} \ \mathbf{E} &= -
abla A_0 - \mathbf{B} &=
abla \lambda \end{aligned}$$

$$\partial_{\mu}F^{\mu\nu} = J^{\nu} \underbrace{-g_{a\gamma}\widetilde{F}_{\mu\nu}\partial_{\mu}a}_{\int}$$
$$\int_{a}^{\mu} = g_{a\gamma}(-\mathbf{B}\cdot\nabla a, -\mathbf{E}\times\nabla a + \partial_{t}a\mathbf{B})$$

Extended Maxwell's equations:

Adapted from: Cyaran O'Hare

"Direct Detection": axion/ALPs experiments

Overview of experimental techniques and the mass ranges they target

Ref. Jaeckel et al 2021

Experiments

Bounds on Axion-photon coupling

Includes direct and indirect detection

https://cajohare.github.io/AxionLimits

Bounds on Axion-photon coupling

Website with up-to-date with axion/ALP bounds: <u>https://cajohare.github.io/AxionLimits</u>

$ abla imes {f B}_a =$

Indirect Detection

In astrophysical systems

+

Axion-photon conversion (Primakoff effect)

DM axions in neutron star magnetospheres

r/N = 441E/N = 5

 10^{-4}

Bounds

Axion-electron coupling

+ many more: axion-proton, dark photon, ...

Website with up-to-date with axion/ALP bounds: <u>https://cajohare.github.io/AxionLimits</u> (Includes notebooks)

Includes direct and indirect detection

Superfluid Dark Matter

Superfluid Dark Matter

Large scales: DM behaves like standard particle DM (CDM).

Suppresses small structures, dyn. effects, formation of cores

Lasha Berezhiani and Justin Khoury (2016)

Galactic scales: DM forms a superfluid \rightarrow emergent MOND dynamics in galaxies

Similar phenomenology than the FDM & SIFDM + explains the rotations curves and scaling relations

Superfluid Dark Matter

Large scales: DM behaves like standard particle DM (CDM).

To describe non-relativistic MOND, it is imposed that:

$$\mathcal{L} = P(X), \qquad P(X) = \frac{2\Lambda (2m)^{3/2}}{3} X \sqrt{|X|}$$

Lasha Berezhiani and Justin Khoury (2016)

Galaxy halo

Newtonian Dynamics

10ND

Condesate core Galactic scales: DM forms a superfluid → emergent MOND dynamics in galaxies

Dark photon

New gauge dark sector - spin 1

 \rightarrow Can also be coupled to other dark sector particles to create millicharged DM

Dark photon

New gauge dark sector - spin 1

Website with up-to-date with axion/ALP bounds: <u>https://cajohare.github.io/AxionLimits</u> (Includes notebooks)

S8 tension

Changes in the small scale paradigm can change the behaviour of DM in many scales, including cosmology Ex.: Fuzzy DM

$$\sigma_8 = \int \mathrm{dln}k \, \frac{k^3}{2\pi} W^2(k) P^{\mathrm{linear}}(k)$$

$$S_8 = \sqrt{\frac{\Omega_{
m m}}{0.3}}\sigma_8$$

The presence of ULAs can significantly lowers S8 for:

$$m_{\rm a} \in [10^{-27}, 10^{-25}] \,\mathrm{eV}$$

S8 is lowered because the Jeans scale today for $m_a = 10^{-25} - 10^{-26} \,\text{eV}$ is about $\lambda_J = 4 - 12 \,h^{-1} \,\text{Mpc}$

Ex.: Fuzzy DM

Planck + BOSS

The presence of ULAs with mass

$$10^{-28} \,\mathrm{eV} \le m_a \le 10^{-25} \,\mathrm{eV}$$

can improve consistency between CMB and galaxy clustering (reduce the S8 discrepancy)

from 2.6σ to 1.7σ

Ex.:

- H0 tension: Early dark energy - axion-like particle

- Model address H0 and S8 tensions: "Chameleon EDE", Karwal et al 2021

Observations

Prime Focus Specctrograph (PFS)

BINGO telescope

CMB-S4

Vera Rubin observatory (LSST)

Simulations

LiteBIRD

New probes

Sub-galactic power spectrum

Using gravitational probes, strong lensing and stellar streams, to describe substructures

New probe

Sub-galactic power spectrum

Using gravitational probes, strong lensing and stellar streams, to describe substructures

<u>Substructure convergence power spectrum</u>

Develop a formalism to compute the substructure convergence power spectrum for different populations of dark matter subhalos.

Change of language: instead of talking about lensing perturbations in terms of individual subhalos, look at the correlation function of the projected density field. (based on Dvorkin's slide)

$$P_{\rm sub}(k) = P_{\rm 1sh}(k) + P_{\rm 2sh}(k)$$

A. Diaz Rivero, et al. (2017); Diaz Rivero, et al., (2018)

Bayer et al. (2018) ; Auger et al. 2009 FDM: Kawai et al. (2021)

Hezaveh et al. (2016) (projected mPS by using strong lensing)

Sub-galactic power spectrum

Using gravitational probes, strong lensing and stellar streams, to describe substructures

Substructure convergence power spectrum

Stellar streams: perturbed by passing substructure. Good gravitational probe, since given their low dynamical temperature and negligible self-interaction, it retains the memory of those encounters.

THIS WORK: Fully analytical understanding of the stream perturbations!

Power spectrum of a stream's stellar density is analytically related to that of the substructure background:

$$P_{*}(k,t) = \chi_{*} \left(k\sigma_{0}t, \frac{D}{k\sigma_{0}^{3}} \right) \frac{k^{2}t^{2}}{3} P_{\Delta\nu}(k,$$

Stream power
$$P_{\Delta\nu}(k,t) = 16\pi^{4}G^{2}\bar{\rho}^{2}k^{2}t \int_{k}^{\infty} \frac{\mathrm{d}q}{q} \frac{\mathcal{P}(q)}{q^{6}}$$

Relates the stellar stream perturbation to the surrounding matter distribution, from dark and luminous substructure

New probe

Sten Delos and Fabian Schmidt (2021)

structure power $\frac{q)}{6} \int \mathrm{d}^3 \boldsymbol{u} \frac{f(\boldsymbol{u})}{\boldsymbol{u}} \theta_H(q\boldsymbol{u}-k\boldsymbol{v})$ Previous:

- Mostly numerical
- Perturbations \longrightarrow sub-halo mass function

|--|

Observations

Prime Focus Specctrograph (PFS)

BINGO telescope

CMB-S4

Vera Rubin observatory (LSST)

Simulations

LiteBIRD

New probes

Future - signals in cosmology

Observations

Photometric and spectroscopic surveys

Prime Focus Spectrograph (PFS)

21cm

CMB

GWs

Small scales can offer some hints of the nature of DM

Astrophysical Observables

Small Scales Opportunity to probe the nature of DM!

DMDistribution

Nature of DM Microphysics Particle physics

Summary

DM builder's guide

What we learned from observations

Thermal candidate: $m_{dm} \ge \text{keV}$ • Cold or warm Or produced cold by a non-thermal mechanism

• Reproduce large and small scale distribution

Clusters like CDM on large scales $k \lesssim 10 \,\mathrm{Mpc}^{-1}$ Clustering on scales smaller than $k \gtrsim 10 \,\mathrm{Mpc}^{-1}$ highly unconstrained

• Non-interacting or weakly interacting

Can have a small electromagnetic interaction. Bound < **milicharge** Can have a small **self interaction**.

Can interact via the **weak force**

 $\Omega_m = 0.308 \pm 0.012$ Abundance (*Planck 2018*)

• Stable

 M_{\odot} Mass

 $m_a \,[{
m eV}]$

