Cosmic Neutrinos and Other Light Relics with the CMB Joel Meyers Michigan Cosmology Summer School 2023 6-5-2023

Image Credit: ACT / Princeton

### History of the Universe



2

## Light Relics – What and Why?

- Light Particles which were relativistic at recombination (m < 1 eV)</li>
- **Relics** Left over from the early universe (with non-negligible energy density)





Cosmology in general, and the CMB in particular, provides a window into very high energy physics through sensitivity to light relics

# **Thermal History**



### Thermal Plasma

- The early universe was filled with a relativistic neutral plasma
- For each species with m << T, the distribution function is

$$f(p) = \frac{1}{\exp\left(p/T\right) \mp 1}$$

- Species with m >> T are Boltzmann suppressed: n~exp(-m/T)
- The energy density of each relativistic species is

$$p(T) = \frac{g}{(2\pi)^3} \int dp \, \frac{4\pi p^3}{\exp\left(p/T\right) \mp 1} = \begin{cases} g\frac{\pi^2}{30}T^4\\ \frac{7}{8}g\frac{\pi^2}{30}T^4 \end{cases}$$

Bosons Fermions



History of the Universe M

5

### Evolution of Plasma Particle Content

• We can define the effective number of relativistic degrees of freedom in equilibrium

$$g_{\star}^{\mathrm{th}}(T) \equiv \sum_{i \in \mathrm{bosons}} g_i + \frac{7}{8} \sum_{j \in \mathrm{fermions}} g_j$$

• Decouplied species contribute with a different temperature

$$g_{\star}^{\text{dec}}(T) \equiv \sum_{i \in \text{bosons}} g_i \left(\frac{T_i}{T}\right)^4 + \frac{7}{8} \sum_{j \in \text{fermions}} g_j \left(\frac{T_j}{T}\right)^4$$

• The total energy density then takes a simple form

$$g_{\star}(T) = g_{\star}^{\text{th}}(T) + g_{\star}^{\text{dec}}(T) \qquad \rho(T) = g_{\star}(T) \frac{\pi^2}{30} T^4$$

- We know the particle content of the Standard Model, so we know how  $g_{\star}(T)$  evolves

| type         |                                | mass               | spin          | g                        |
|--------------|--------------------------------|--------------------|---------------|--------------------------|
| quarks       | $t, \bar{t}$                   | $173  {\rm GeV}$   | $\frac{1}{2}$ | $2 \cdot 2 \cdot 3 = 12$ |
|              | $b, \overline{b}$              | $4 \mathrm{GeV}$   |               |                          |
|              | $c, \bar{c}$                   | $1 { m GeV}$       |               |                          |
|              | $s, ar{s}$                     | $100 {\rm ~MeV}$   |               |                          |
|              | $d, ar{s}$                     | $5 { m MeV}$       |               |                          |
|              | $u, \bar{u}$                   | $2 { m MeV}$       |               |                          |
| gluons       | $g_i$                          | 0                  | 1             | $8 \cdot 2 = 16$         |
| leptons      | $	au^{\pm}$                    | $1777 { m ~MeV}$   | $\frac{1}{2}$ | $2 \cdot 2 = 4$          |
|              | $\mu^{\pm}$                    | $106 { m MeV}$     | 2             |                          |
|              | $e^{\pm}$                      | 511  keV           |               |                          |
|              | $\nu_{\tau}, \bar{\nu}_{\tau}$ | < 0.6  eV          | $\frac{1}{2}$ | $2 \cdot 1 = 2$          |
|              | $\nu_{\mu}, \bar{\nu}_{\mu}$   | < 0.6  eV          | 2             |                          |
|              | $\nu_e, \bar{\nu}_e$           | $< 0.6~{\rm eV}$   |               |                          |
| gauge bosons | $W^+$                          | $80  {\rm GeV}$    | 1             | 3                        |
| 00           | $W^{-}$                        | $80  \mathrm{GeV}$ |               |                          |
|              | $Z^0$                          | $91 { m GeV}$      |               |                          |
|              | $\gamma$                       | 0                  |               | 2                        |
| Higgs boson  | $H^0$                          | $125~{\rm GeV}$    | 0             | 1                        |

#### Table Credit: Baumann

### Entropy Conservation

• Entropy is conserved, even as the particle content of the plasma changes

$$\frac{\mathrm{d}}{\mathrm{d}t}(a^3s(T)) = 0$$
  $s(T) = \frac{\rho(T) + P(T)}{T} = \frac{4\rho(T)}{3T}$ 

• We can define an effective number of relativistic species for entropy

$$s(T) = g_{\star S}(T) \frac{2\pi^2}{45} T^3 \qquad g_{\star S}(T) = g_{\star S}^{\text{th}}(T) + g_{\star S}^{\text{dec}}(T)$$
$$g_{\star S}^{\text{th}}(T) = g_{\star}^{\text{th}}(T) \qquad g_{\star S}^{\text{dec}}(T) \equiv \sum_{i \in \text{bosons}} g_i \left(\frac{T_i}{T}\right)^3 + \frac{7}{8} \sum_{j \in \text{fermions}} g_j \left(\frac{T_j}{T}\right)^3$$

• Conservation of entropy allows us to calculate the temperature evolution

$$T \propto g_{\star S}(T)^{-1/3} a^{-1}$$

### **Standard Model Particle Content**

- Particle species disappear from equilibrium when the plasma temperature drops below their mass
- The sharp dip in  $g_{\star}(T)$ around 150 MeV results from the QCD phase transition where the relevant degrees of freedom change from quarks and gluons to baryons and hadrons



Image Credit: Baumann

8

# **Cosmic Neutrinos**



### **Standard Model Light Relics - Cosmic Neutrinos**

- Neutrinos were in thermal equilibrium with the plasma until the weak interaction rate became inefficient compared to the Hubble expansion rate around T~1 MeV
- After decoupling, the cosmic neutrino background persisted, undergoing free expansion
- Annihilation of electrons and positrons around T~0.5 MeV heated photons relative to neutrinos



Image Credit: Baumann

### **Cosmic Neutrino Background Temperature**

- We can calculate the temperature of cosmic neutrinos relative to photons
- After neutrino decoupling, prior to electron-positron annihilation, we have:

$$g_{\star S}^{\text{th}}(T_{+}) = 2 + \frac{7}{8}(2+2) = \frac{11}{2}$$
  
$$\gamma \quad \mathbf{e}^{+} \quad \mathbf{e}^{-}$$

• After electron-positron annihilation, we have only photons:

$$g_{\star S}^{\rm th}(T_{-}) = 2$$

• Entropy conservation gives the temperature ratio after annihilation:

$$T_{\nu} = \left(\frac{g_{\star S}^{\text{th}}(T_{-})}{g_{\star S}^{\text{th}}(T_{+})}\right)^{1/3} T_{\gamma} = \left(\frac{4}{11}\right)^{1/3}$$

11

### **Effective Number of Neutrino Species**

- We can measure the gravitational influence of cosmic neutrinos
- One way this shows up is through the total energy density of neutrinos

$$\rho_{\rm r} = \rho_{\gamma} \left( 1 + \frac{7}{8} \left( \frac{4}{11} \right)^{4/3} N_{\rm eff} \right)$$

- For instantaneous decoupling, N<sub>eff</sub> counts the number of neutrino species
- A complete treatment of neutrino transport gives a slightly larger number in the Standard Model

$$N_{\rm eff}^{\rm SM} = 3.044(1)$$



Escudero Abenza (2020); Akita, Yamaguchi (2020); Froustey, Pitrou, Volpe (2020); Bennett, et al (2021); Bond, Fuller, Grohs, JM, Wilson (In Prep.)

### Summary of Cosmic Neutrino Decoupling



Baumann (2018); Akita, Yamaguchi (2020)<sup>13</sup>

## Light Relics Beyond the Standard Model



### New Light Species are Ubiquitous in Standard Model Extensions



Axions and Axion-Like Particles

Complex Dark Sectors

**Sterile Neutrinos** 

15

... and many more

Green, Amin, JM, Wallisch, et al (2019); Dvorkin, JM, et al (2022) Image Credits: Quanta Magazine; Arkani-Hamed, et al (2016); Symmetry Magazine

### Light Thermal Relics Set Useful Targets



The relic density of any new light species that was ever in thermal equilibrium with the Standard Model plasma can be computed from its spin and decoupling temperature, setting clear targets for future surveys

$$\Delta N_{
m eff} = rac{4}{7} g_s igg( rac{43/4}{g_{\star}(T_{
m F})} igg)^{4/3}$$

Freeze-out occurs when production rate falls below Hubble rate

$$\Gamma \sim \frac{T^{2n+1}}{\Lambda^n} \qquad \qquad H \sim \frac{T^2}{M_{\rm pl}}$$

CMB-S4 (2016); Green, Amin, JM, Wallisch, et al (2019); Dvorkin, JM, et al (2022) <sup>16</sup>

# **Measuring Light Relics**



### CMB Diffusion Damping

- Random walk of CMB photons prior to recombination smooths out fluctuations below the free streaming length of photons
- The damping scale of photons is affected by the scattering rate and expansion rate

$$r_d^2 \sim (\sigma_T n_e H)^{-1}$$



### Light Relics Affect CMB Damping Scale



- Increasing N<sub>eff</sub> increases the expansion rate prior to recombination
- With θ<sub>s</sub> fixed (which is measured very well with current observations), increasing N<sub>eff</sub> leads to increased damping
- The damping scale is also impacted by the free electron density around recombination, which is affected by the primordial helium abundance

### **Light Relics Density Perturbations**

- The density of light relics are perturbed in the same way as the other components (for adiabatic initial conditions)
- The fluctuations of free-streaming light relics propagate at the speed of light, faster than the sound speed of the photon baryon plasma (c<sup>2</sup>≈c<sup>2</sup>/3)
- The gravitational attraction of the light relics pulls the acoustic peak to a larger radius



Bashinsky, Seljak (2004); Baumann, Green, JM, Wallisch (2016); Image Credit: Eisenstein <sup>20</sup>

### Free-Streaming Light Relics and the Phase Shift



Bashinsky, Seljak (2004); Baumann, Green, JM, Wallisch (2016); Image Credit: Wallisch (2018)

### Light Relics Measurements Favor Wide Surveys



Light relics are best measured with the CMB damping tail, meaning that at fixed effort, more unique modes are available in a wide survey compared to a deep survey - we designed the CMB-S4 wide survey scan strategy to maximize sky coverage in order meet our target for light relics



Planck (2108); CMB-S4 (2016); CMB-S4 (2019) <sup>22</sup>

## **Massive Cosmic Neutrinos**



### **Neutrino Mass**

normal hierarchy (NH)



#### inverted hierarchy (IH)

Cosmology is sensitive to the gravitational effects of the cosmic neutrino background, allowing a measurement of a sum of neutrino masses

Current Planck 2018 constraint:  $\sum m_{\nu} < 120 \text{ meV} (95\% \text{ CL})$ 

 $\sum m_{\nu} \gtrsim 58 \text{ meV} \qquad \sum m_{\nu} \gtrsim 105 \text{ meV}$ 

Super-Kamiokande (1999); Sudbury Neutrino Observatory (2001); CMB-S4 (2016) <sup>24</sup>

### Value of Cosmological Neutrino Mass Measurement



#### **Particle Physics**

Absolute neutrino mass scale sets a target for complementary lab-based searches for neutrino mass



- Cosmology
- Provides end-to-end test of cosmic history and is sensitive to new massive species (including gravitinos)



#### **Astrophysics**

Multiple probes of matter power allow neutrino mass to be disentangled from nonlinear and baryonic effects

#### Green, JM (2021); Gerbino, Grohs, Lattanzi, et al (2022)

### **Cosmic Neutrino Background**



Cosmic neutrinos decoupled from the thermal plasma around 1 MeV, and were then diluted relative to photons by electron-positron annihilation

$$T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma}$$

Cosmic neutrino background properties today:

$$T_{\nu,0} = 1.95 \,\mathrm{K}$$
  
= 1.68 × 10<sup>-4</sup> eV  
 $n_{\nu_i,0} = 112 \,\mathrm{cm}^{-3}$ 

Cosmic neutrino background provides an abundance of non-relativistic neutrinos

### Massive Neutrinos Suppress Matter Clustering



The large velocities of cosmic neutrinos causes them to free stream out of potential wells and suppress the growth of structure on scales smaller than their free-streaming length

$$k_{\rm fs} = 0.04 \, h \, {\rm Mpc}^{-1} \times \frac{1}{1+z} \, \left( \frac{\sum m_{\nu}}{58 \, {\rm meV}} \right)$$

$$P_{\sum m_{\nu}}(k \gg k_{\rm fs}, z) \approx \left(1 - 2f_{\nu} - \frac{6}{5}f_{\nu}\log\frac{1+z_{\nu}}{1+z}\right)P_{\sum m_{\nu}=0}(k \gg k_{\rm fs}, z)$$
$$f_{\nu} \equiv \frac{\Omega_{\nu}}{\Omega_{\rm m}} \simeq 4.3 \times 10^{-3} \left(\frac{\sum m_{\nu}}{58 \text{ meV}}\right)$$

Hu, Eisenstein, Tegmark (1998); Cooray (1999); Abazajian, et al (2011); Green, JM (2021); Gerbino, Grohs, Lattanzi, et al (2022)

### Measuring Clustering with Cosmological Surveys



Sensitivity regimes of various probes of clustering

- Galaxy number density, galaxy weak lensing, counts of galaxy clusters, and weak lensing of the cosmic microwave background (among other probes) are sensitive to the clustering of matter across a wide range of scales and redshifts
- Unfortunately, the free-streaming scale cannot be resolved, and we must rely on a comparison of power at late and early times in order to measure neutrino mass

### Neutrino Mass with CMB Lensing

### See Gil's Tuesday Lecture!



- Suppression will be clearly visible with upcoming experiments, but is subject to two important degeneracies:
  - Matter density
  - Primordial Amplitude / Optical depth



Measuring suppression of clustering with CMB-S4 lensing

#### Planck (2018); CMB-S4 (2016); Green, JM (2021) <sup>29</sup>

### Matter Density with Baryon Acoustic Oscillations



DESI projections (Font-Ribera++ 2014b)

- Spectroscopic galaxy surveys such as DESI will precisely measure the expansion history using Baryon Acoustic Oscillations (BAO) as a standard ruler
- This provides a precise determination of the matter density, essential for a calibration of the amplitude of the matter power spectrum

### **CMB** Measurements of the Primordial Amplitude



- Measurements of the CMB power spectra at  $\ell>30$  tightly constrain the combination  $A_s e^{-2\tau}$ , while polarization at  $\ell<20$  is sensitive to  $\tau^2$ 
  - Large scale polarization is most easily measured with a CMB satellite or balloon-borne CMB experiment

Figure Credit: Reichardt (2015) <sup>31</sup>

### CMB + BAO Forecasts for Neutrino Mass Constraints



Current constraint:  $\sum m_{\nu} < 120 \text{ meV} (95\% \text{ CL})$ 

(Planck + BAO)

Planck  $\tau$ 

CMB lensing reconstruction with upcoming surveys, combined with DESI BAO, will enable significant measurement of even minimal  $\sum m_{ij}$  especially with improved  $\tau$  measurement

32 CMB-S4 (2016); Simons Observatory (2018); Planck (2018)

## **Big Bang Nucleosynthesis**



### Standard Big Bang Nucleosynthesis



- Big Bang Nucleosynthesis (BBN) is the process by which protons and neutrons became bound into light nuclei in the early universe
- Standard BBN depends only on a single parameter, the baryon-to-photon ratio
- Precise measurements of the primordial abundance of helium-4 and deuterium constrain deviations from the standard cosmic history

### **BBN and Light Relics**



- The light relic density affects the expansion rate during BBN, and thus affects the predicted abundances
- Increasing N<sub>eff</sub> leads to larger expansion rate, leading to higher weak freeze-out temperature, and thus larger neutron-to-proton ratio, ultimately giving a larger helium abundance
- Combined with the CMB constraint on the baryon-to-photon ratio, measurements of the primordial helium-4 and deuterium abundances gives a constraint on N<sub>eff</sub>

$$N_{\rm eff}^{\rm BBN} = 2.93 \pm 0.23$$

Yeh, Shelton, Olive Fields (2022); Figure Credit: Cyburt, et al (2015)

35

### **BBN** and New Physics in the Neutrino Sector



The precision with which we can measure primordial light element abundances (especially deuterium and Helium-4) allows us to use BBN as a powerful probe of new physics

This becomes an even sharper test when combined with CMB constraints

Bond, Fuller, Grohs, JM, Wilson (In Prep.)

### CMB Tests of BBN

- The CMB power spectrum is sensitive to both N<sub>eff</sub> and Y<sub>P</sub> and can therefore be used to test BBN
- Both parameters affect the damping scale, but they are not totally degenerate because N<sub>eff</sub> has other effects (including the phase shift)
- BBN predicts a particular relationship between N<sub>eff</sub> and Y<sub>P</sub>
- Current observations are consistent with standard BBN, and place constraints on non-standard scenarios (like time-dependent N<sub>off</sub>)



37

# Conclusion

### Conclusion



Image Credits: Planck; BEBC/CERN; Springel, et al; Alvarez, Kaehler, Abel



# **Backup Slides**

### **Evolution of Ground-Based CMB Surveys**



Science-driven expansion of capabilities + cost-driven consolidation of teams

- Late 2010s:
  - single-site, single resolution
  - O(10K) detectors
  - ACT, BICEP/Keck, POLARBEAR, SPT, etc
- Early 2020s:
  - single-site, dual-resolution
  - O(50K) detectors
  - Simons Observatory (SO), South Pole Observatory (SPO)
- Late 2020s:
  - dual-site, dual-resolution
  - O(500K) detectors
  - CMB-S4

#### Slide Credit: CMB-S4 42