Inflationary Insights with the CMB Joel Meyers Michigan Cosmology Summer School 2023 6-6-2023

Image Credit: ACT / Princeton

History of the Universe

2

The Question of Initial Conditions

- Why is the universe so homogenous on large scales?
- What sourced the fluctuations in density that seeded structure growth?

Classical Dynamics of Inflation

Based on TASI Lectures on Inflation by Daniel Baumann

Horizon Problem

 In the classical Hot Big Bang model, where the universe always contained only matter and radiation, the comoving Hubble sphere always grows:

$$\tau \equiv \int_0^t \frac{\mathrm{d}t'}{a(t')} = \int_0^a \frac{\mathrm{d}a}{Ha^2} = \int_0^a \mathrm{d}\ln a \left(\frac{1}{aH}\right)$$
$$(aH)^{-1} = H_0^{-1} a^{\frac{1}{2}(1+3w)} \qquad \tau \propto a^{\frac{1}{2}(1+3w)}$$

 In such a scenario, one would expect ~10⁵ causally disconnected regions at the surface of last scattering

Image Credit: Baumann

The CMB is Observed to Be Very Uniform

Image Credits: COBE DMR, Planck

6

Flatness Problem

 In the classical Hot Big Bang model, the deviation from spatial flatness grows with time

$$1 - \Omega(a) = \frac{-k}{(aH)^2}$$
$$\frac{d|\Omega - 1|}{d\ln a} > 0 \quad \Leftrightarrow \quad 1 + 3w > 0$$

• The observed flatness of the current universe would require extreme flatness in the distant past

Image Credit: NASA / WMAP

Inflationary Solution - Shrinking Hubble Sphere

 Inflation solves the Horizon and Flatness problems by providing a period with a shrinking Hubble sphere preceding the Hot Big Bang evolution

$$\frac{d}{dt}\left(\frac{H^{-1}}{a}\right) < 0 \quad \Rightarrow \quad \frac{d^2a}{dt^2} > 0 \quad \Rightarrow \quad \rho + 3p < 0$$

• The Hubble sphere shrinks during accelerated expansion, which can be achieved with negative pressure

Simple Model of Inflation - Single Scalar Field

• Negative pressure can be achieved with a scalar field whose energy density is dominated by its potential

$$\rho_{\phi} = \frac{1}{2}\dot{\phi}^2 + V(\phi)$$
$$p_{\phi} = \frac{1}{2}\dot{\phi}^2 - V(\phi)$$

• A scalar field in an expanding universe acts like a ball rolling on a hill subject to friction

$$\ddot{\phi} + 3H\dot{\phi} + V_{,\phi} = 0$$

Slow-Roll Inflation

• A sufficiently long period of accelerated expansion can be achieved if the scalar field obeys the slow-roll conditions

$$\begin{split} \varepsilon &= -\frac{\dot{H}}{H^2} = \frac{1}{2} \frac{\dot{\phi}^2}{H^2} \\ \eta &= -\frac{\ddot{\phi}}{H\dot{\phi}} = \varepsilon - \frac{1}{2\varepsilon} \frac{d\varepsilon}{dN} \end{split} \qquad \varepsilon, |\eta| < 1 \end{split}$$

• The horizon and flatness problems are solved with enough inflationary expansion

$$N(\phi) \equiv \ln \frac{a_{\text{end}}}{a} = \int_{t}^{t_{\text{end}}} H dt = \int_{\phi}^{\phi_{\text{end}}} \frac{H}{\dot{\phi}} d\phi$$
$$N_{\text{tot}} \equiv \ln \frac{a_{\text{end}}}{a_{\text{start}}} \gtrsim 60$$

Image Credit: Baumann

Slow-Roll Approximation

• The conditions on the expansion can be reframed as conditions on the scalar field potential

$$\epsilon_{\rm v}(\phi) \equiv \frac{M_{\rm pl}^2}{2} \left(\frac{V_{,\phi}}{V}\right)^2 \qquad \eta_{\rm v}(\phi) \equiv M_{\rm pl}^2 \frac{V_{,\phi\phi}}{V}$$
$$\varepsilon \approx \epsilon_{\rm v} \qquad \eta \approx \eta_{\rm v} - \epsilon_{\rm v}$$

- Successful slow-roll inflation requires a sufficiently flat potential
- Inflationary equations of motion simplify in slow-roll regime

$$\dot{\phi} \approx -\frac{V_{,\phi}}{3H}$$

 $H^2 \approx \frac{1}{3}V(\phi) \approx \text{const.}$

Image Credit: Baumann¹¹

Quantum Fluctuations During Inflation

Based on TASI Lectures on Inflation by Daniel Baumann

Fluctuations and Horizon Exit

• It is convenient to Fourier transform perturbations to the scalar field and the spacetime metric, since each mode evolves independently at linear order

$$\delta X(t, \mathbf{x}) \equiv X(t, \mathbf{x}) - \bar{X}(t)$$
$$X_{\mathbf{k}}(t) = \int \mathrm{d}^{3}\mathbf{x} \ X(t, \mathbf{x}) \ e^{i\mathbf{k}\cdot\mathbf{x}}$$

• The shrinking Hubble sphere during inflation causes fluctuation modes to exit the horizon during inflation and to re-enter the horizon after inflation

> subhorizon : $k \gg aH$ superhorizon : k < aH

Image Credit: Baumann

Superhorizon Conservation

• We are primarily interested in scalar and tensor perturbations, described by the gauge-invariant quantities

$$\mathcal{R} = \Psi + \frac{H}{\bar{\phi}}\delta\phi \qquad \qquad h_i^i = \partial^i h_{ij} = 0$$

• These quantities are conserved on superhorizon scales during and after single-field inflation

$$\dot{\mathcal{R}} = -\frac{H}{\bar{\rho} + \bar{p}} \,\delta p_{en} + \frac{k^2}{(aH)^2} \left(\dots\right)$$

Weinberg (2004); Image Credit: Baumann

From Quantum Fluctuations to Cosmological Perturbations

Image Credit: Baumann¹⁵

Quantum Vacuum Fluctuations

• We are interested in the statistics of the curvature and metric perturbations at horizon exit

 $\langle \mathcal{RR} \rangle = \int_0^\infty \Delta_\mathcal{R}^2(k) \,\mathrm{d} \ln k$

 Scalar fields which are light during inflation (m<<H) experience quantum fluctuations with variance fixed by the Hubble rate

$$\Delta_{\delta\phi}^2 = \left(\frac{H}{2\pi}\right)$$

• Perturbations to the inflaton change the duration of inflation

$$\mathcal{R} = H \frac{\delta \phi}{\dot{\phi}} \equiv -H \delta t$$

Quantum Harmonic Oscillator Ground State

Primordial Power Spectra

• The scalar spectrum is determined by the expansion rate and slow-roll parameter at horizon exit

$$\Delta_{\mathcal{R}}^{2}(k) = \frac{H_{\star}^{2}}{(2\pi)^{2}} \frac{H_{\star}^{2}}{\dot{\phi}_{\star}^{2}} = \left. \frac{1}{8\pi^{2}} \frac{H^{2}}{M_{\rm pl}^{2}} \frac{1}{\varepsilon} \right|_{k=aH}$$

• Each polarization of tensor fluctuation acts just like a light scalar field, giving a fluctuation amplitude directly determined by the expansion rate

$$\Delta_{\rm t}^2(k) \equiv 2\Delta_h^2(k) = \left. \frac{2}{\pi^2} \frac{H^2}{M_{\rm pl}^2} \right|_{k=aH}$$

17

Image Credit: Baumann

Primordial Tensor Spectrum

- A spectrum of primordial gravitational waves is a generic prediction of inflation
- Measuring the amplitude of primordial gravitational waves would indicate the energy scale of inflation
- The tensor-amplitude is often reported in terms of the tensor-to-scalar ratio

$$r \equiv \frac{\Delta_{\rm t}^2(k)}{\Delta_{\rm s}^2(k)} \qquad \Delta_{\mathcal{R}}^2 \sim 10^{-9}$$
$$V^{1/4} \sim \left(\frac{r}{0.01}\right)^{1/4} \, 10^{16} \, {\rm GeV}$$

Spectral Tilt

• The expansion rate and field velocity change during inflation, giving a scale-dependence to the fluctuation amplitude

$$n_{\rm s} - 1 \equiv \frac{d \ln \Delta_{\rm s}^2}{d \ln k}$$
 $n_{\rm t} \equiv \frac{d \ln \Delta_{\rm t}^2}{d \ln k}$

• The spectral tilt can be straightforwardly calculated in the slow-roll approximation

$$n_{\rm s} - 1 = 2\eta_{\rm v}^{\star} - 6\epsilon_{\rm v}^{\star} \qquad n_{\rm t} = -2\epsilon_{\rm v}^{\star}$$

• All single-field slow-roll models of inflation obey a consistency relation

$$r = 16\epsilon_{\rm v}^{\star}$$
 $r = -8n_{\rm t}$

log(k)

Signals of Inflation in the CMB

Linear Polarization of the CMB

- Thomson scattering of CMB photons induces a linear polarization when the incident radiation exhibits a quadrupole anisotropy
- The polarization of the CMB can be characterized in terms of the Stokes parameters Q and U

Image Credits: Alexander, Hu²¹

E and B Modes

Kamionkowski, Kosowsky, Stebbins (1997); Zaldarriaga, Seljak (1997); Image Credit: PIPER (2014)

T, E, and B Spectra

- We have precise measurements of temperature and E-mode polarization spectra that agree with the primordial scalar spectrum from inflation (nearly scale-invariant with small red tilt)
- We also measure the B-mode polarization spectrum, though unfortunately not yet from primordial gravitational waves

Image Credit: Chang, Huffenberger, et al (2022)²³

Current Constraints

- The scalar spectral tilt n_s and tensor-to-scalar ratio r are predicted by each inflation model, specifying a point in the n_s - r plane
- Observational constraints therefore test specific models of inflation
- The simplest ϕ^2 model of inflation is already strongly disfavored by current observations

Challenges for Detecting Primordial B Modes

- **Small Signal** The primordial B-mode power is inherently small, and we do not know the amplitude
 - Requires very deep observations
- Polarized Foregrounds Astrophysical foregrounds such as
 Galactic dust produce polarized
 emission
 - Requires multi-frequency observations
- Gravitational Lensing Deflection of CMB photons converts E modes to B modes (See Gil's Lecture after lunch)
 - Requires delensing

Future Prospects for Detecting Primordial B Modes

- Future surveys are designed to detect primordial gravitational waves or rule out a broad class of models that naturally explains the deviation from scale invariance
- CMB-S4 is designed to either achieve a 5σ measurement of r>0.003 or set an upper limit of r<0.001 at 95% confidence

CMB-S4 (2016)²⁶

Impacts of Detecting Primordial Gravitational Waves

- Direct probe of earliest times
- Evidence of quantization of gravity
- Strong evidence for inflation
- Determines energy scale of inflation
- New characteristic energy scale near GUT scale

$$V^{1/4} \sim \left(\frac{r}{0.01}\right)^{1/4} \, 10^{16} \, \text{GeV}$$

• Rules out small-field models of inflation

$$r = \frac{8}{M_{\rm pl}^2} \left(\frac{d\phi}{dN}\right)^2 \qquad \frac{\Delta\phi}{M_{\rm pl}} = \int_{N_{\rm end}}^{N_{\rm cmb}} \mathrm{d}N \sqrt{\frac{r}{8}} = \mathcal{O}(1) \times \left(\frac{r}{0.01}\right)^{1/2}$$

Image Credit: Center for Theoretical Cosmology, Cambridge 27

Primordial Non-Gaussianity

Beyond the Power Spectrum

- The simplest models of inflation predict nearly Gaussian scalar fluctuations
- Fluctuations can be non-Gaussian, predicting higher-order correlations of curvature perturbations
- In principle, much more information about the details of inflation is contained in the higher-order correlations

$$\langle \mathcal{R}_{\mathbf{k}_1} \mathcal{R}_{\mathbf{k}_2} \rangle = (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2) P_{\mathcal{R}}(k_1)$$

 $\langle \mathcal{R}_{\mathbf{k}_1} \mathcal{R}_{\mathbf{k}_2} \mathcal{R}_{\mathbf{k}_3} \rangle = (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) B_{\mathcal{R}}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3)$

Bispectrum Shapes

Local (Squeezed) Non-Gaussianity

$$\mathcal{R}(\mathbf{x}) = \mathcal{R}_g(\mathbf{x}) + \frac{3}{5} f_{\mathrm{NL}}^{\mathrm{local}} \mathcal{R}_g(\mathbf{x})^2$$

Image Credit: U Michigan Workshop 2011 ³¹

Single-Field Consistency Condition

- All models of inflation with a single clock predict negligible squeezed bispectrum
- Long wavelength curvature fluctuations are locally indistinguishable from a rescaling of coordinates
- Small-scale power cannot correlate with long wavelength fluctuations apart from projection effects
- A detection of local (squeezed) non-Gaussianity would rule out all single field models of inflation

Maldacena (2002); Creminelli, Zaldarriaga (2004)³²

Models Predicting Local Non-Gaussianity

• Curvaton Scenario - Spectator field is frozen due to Hubble friction during inflation, oscillates and redshifts like matter after inflation, decays to radiation

 Modulated Reheating - Value of spectator field determines rate of decay of inflation into radiation

Linde, Mukhanov (1997); Enqvist, Sloth (2002); Lyth, Wands (2002) Kofman (2003); Dvali, Gruzinov, Zaldarriaga (2004) ³³

Measuring Non-Gaussianity in the CMB

Current Planck constraints:

 $f_{\rm NL}^{\rm local} = -0.9 \pm 5.1$ $f_{\rm NL}^{\rm equil} = -26 \pm 47$ $f_{\rm NL}^{\rm ortho} = -38 \pm 24$

Future CMB-S4 constraints:

$$\sigma(f_{\rm NL}^{\rm local}) = 2.6$$

$$\sigma(f_{\rm NL}^{\rm equil}) = 21.2$$

$$\sigma(f_{\rm NL}^{\rm ortho}) = 9.1$$

Planck (2018); CMB-S4 (2016) 34

Backup Slides

Single Field Inflation Predicts Adiabatic Fluctuations

37