# CMB Probes of LSS: Lensing \& SZ 

## Gil Holder

T interiniof

## Outline

- the "surface of last scattering" is actually not the final word for lots of photons
* Thomson scattering
$\star$ lensing
* extragalactic foregrounds



## Ionization non-equilibrium

Hubble expansion causes recombinations to "freeze out" as e - and $\mathrm{p}^{+}$can't find each other in the dilute universe
small residual ionization keeps gas and CMB thermally coupled for a surprisingly long time

reionization leads to unbinding of electrons from H atoms due to UV background ionizing field


Snowmass CMB Measurements white paper 2203.07638

WMAP: +- 0.015 ; Planck: +-0.005; ???: +-0.002

temperature

polarization

## Ionization and CMB Polarization



## Scattering on moving electrons: $k S Z$

- kinetic SunyaevZeldovich effect: Thomson flow of electrons
$\frac{\Delta T_{\mathrm{CMB}}}{T_{\mathrm{CMB}}} \approx-\int \sigma_{\mathrm{T}} n_{\mathrm{e}} n \cdot \boldsymbol{\beta}_{\mathrm{p}} \mathrm{d} l$


## Scattering on moving electrons: kSZ

clumps of moving electrons at reionization, and at late times


## Scattering on moving electrons: kSZ



## Scattering on moving electrons: kSZ

## current status:

detected in crosscorrelation with galaxies/ clusters
forecast:
soon to be detected in auto-spectrum, higher order correlations could be very powerful for largest scales


Munchmeyer et al 20181

## Scattering on moving electrons: tSZ

- thermal SunyaevZeldovich effect: Thomson scattering by thermal motions of electrons
$y \equiv \int \frac{k_{\mathrm{B}} T_{\mathrm{e}}}{m_{\mathrm{e}} c^{2}} \mathrm{~d} \tau \mathrm{e}=\int \frac{k_{\mathrm{B}} T_{\mathrm{e}}}{m_{\mathrm{e}} c^{2}} n_{\mathrm{e}} \sigma \mathrm{T}^{\mathrm{d}} l=\frac{\sigma_{\mathrm{T}}}{m_{\mathrm{e}} c^{2}} \int P_{\mathrm{e}} \mathrm{d} l$.


## Thermal Sunyaev-Zel’dovich Effect



Optical depth: $\tau \sim 0.01$
Fractional energy gain per scatter: $\frac{k T}{m_{e} c^{2}} \sim 0.01$
Typical cluster signal: ~500 uK

## Thermal SZ Effect (and relativistic corrections)





3 degrees


One of the heaviest objects in the universe $>10^{15}$ solar masses

1 degree

## tSZ-selected Galaxy

 Clusters- now many thousands of galaxy clusters have been discovered by their CMB signatures


Hilton et al 2021

## Compton y maps

Tanimura et al.
tSZ map 2020


## Compton y power spectrum

Hint that maybe tSZ power is low at high ell

Almost entirely just Ihalo term


Tanimura et al 2021
lensing of primordial fluctuations by intervening fluctuations


ESA and the Planck Collaboration

## Gravitational lensing

$$
\hat{\alpha}=\frac{4 G M}{c^{2} \xi}
$$

Bartelmann \& Schneider




$$
\vec{\beta}=\vec{\theta}-\frac{D_{\mathrm{ds}}}{D_{\mathrm{s}}} \hat{\vec{\alpha}}\left(D_{\mathrm{d}} \vec{\theta}\right) \equiv \vec{\theta}-\vec{\alpha}(\vec{\theta})
$$

$$
\vec{\alpha}(\vec{\theta})=\frac{1}{\pi} \int_{\mathbb{R}^{2}} d^{2} \theta^{\prime} \kappa\left(\overrightarrow{\theta^{\prime}}\right) \frac{\vec{\theta}-\vec{\theta}^{\prime}}{\left|\vec{\theta}-\vec{\theta}^{\prime}\right|^{2}}
$$

$$
\psi(\vec{\theta})=\frac{1}{\pi} \int_{\mathbb{R}^{2}} d^{2} \theta^{\prime} \kappa\left(\vec{\theta}^{\prime}\right) \ln \left|\vec{\theta}-\vec{\theta}^{\prime}\right|
$$

lensing potential

$$
\mathcal{A}(\vec{\theta})=\frac{\partial \vec{\beta}}{\partial \vec{\theta}}=\left(\delta_{i j}-\frac{\partial^{2} \psi(\vec{\theta})}{\partial \theta_{i} \partial \theta_{j}}\right)=\left(\begin{array}{cc}
1-\kappa-\gamma_{1} & -\gamma_{2} \\
-\gamma_{2} & 1-\kappa+\gamma_{1}
\end{array}\right),
$$

where we have introduced the components of the shear $\gamma \equiv \gamma_{1}+\mathrm{i} \gamma_{2}=|\gamma| \mathrm{e}^{2 \mathrm{i} \varphi}$

$$
\begin{gathered}
\gamma_{1}=\frac{1}{2}\left(\psi, 11-\psi_{, 22}\right), \quad \gamma_{2}=\psi_{, 12}, \\
\mathcal{A}=(1-\kappa)\left(\begin{array}{cc}
1-g_{1} & -g_{2} \\
-g_{2} & 1+g_{1}
\end{array}\right) \quad \begin{array}{c}
\text { distortion has overall } \\
\text { magnification } \\
\text { image gets bigger (or smale), } \\
\text { not brighter (dimmer) }
\end{array} \\
g(\vec{\theta}) \equiv \frac{\gamma(\vec{\theta})}{1-\kappa(\vec{\theta})} \quad \text { reduced shear }
\end{gathered}
$$

## CMB Lensing

Photons get shifted

$$
T^{L}(\hat{\mathbf{n}})=T^{U}(\hat{\mathbf{n}}+\nabla \phi(\hat{\mathbf{n}}))
$$



In WL limit, add many
deflections along line of sight

$$
\nabla \phi(\hat{\mathbf{n}})=-2 \int_{0}^{\chi_{\star}} d \chi \frac{\chi_{\star}-\chi}{\chi_{\star} \chi} \nabla_{\perp} \Phi(\chi \hat{\mathbf{n}}, \chi)
$$

Broad kernel, peaks at z $\sim 2$

- $\quad$ CMB is a unique source for lensing
- Gaussian, with well-understood power spectrum (contains all info)
- At redshift which is (a) unique, (b) known, and (c) highest
patch of sky (the North pole) as seen by Planck (17x10 degrees)


SIMULATED lensing effect (20x larger than typical)


## Lensing simplified

- gravitational
potentials distort images by stretching, squeezing, shearing

Gravity

# Lensing simplified 

- where gravity stretches, gradients become smaller

- where gravity compresses, gradients are larger
- shear changes direction



## CMB Power Spectrum



## CMB Power Spectrum



Spatially varying power spectrum!!

## Effect on CMB Power Spectrum

- mixing of power leads to smoothing of acoustic peaks
- small effect but data is really good



## Mode Coupling from Lensing

$$
\begin{aligned}
T^{L}(\hat{\mathbf{n}}) & =T^{U}(\hat{\mathbf{n}}+\nabla \phi(\hat{\mathbf{n}})) \\
& =T^{U}(\hat{\mathbf{n}})+\nabla T^{U}(\hat{\mathbf{n}}) \cdot \nabla \phi(\hat{\mathbf{n}})+O\left(\phi^{2}\right)
\end{aligned}
$$

- Non-gaussian mode coupling for $l_{1} \neq-l_{2}$ :



## E-modes and B-modes

$$
\begin{aligned}
Q(l) & =\left[E(l) \cos \left(2 \phi_{l}\right)-B(l) \sin \left(2 \phi_{l}\right)\right] \\
U(l) & =\left[E(l) \sin \left(2 \phi_{l}\right)+B(l) \cos \left(2 \phi_{l}\right)\right] .
\end{aligned}
$$

- E/B is a different way to express polarization field
- easy to understand in flat-sky limit (i.e. Fourier modes)


## E-modes/B-modes

- E-modes vary spatially parallel or perpedicular to polarization direction
- B-modes vary spatially at 45 degrees
- CMB
- scalar perturbations only generate *only* E
- Lensing of CMB is much more obvious in polarization!


Image of positive kx/positive ky Fourier transform of a 10x10 deg chunk of Stokes Q CMB map [simulated; nothing clever done to it]

## B Modes from E Modes

Before: pure E mode (left) and pure B mode (right)

From B-pol.org

After: large point mass lenses image


Lensing done with "Lens an astrophysicist"
http://theory2.phys.cwru.edu/~pete/GravitationalLens/


## CMB Lensing Power Spectra



## Cosmological contraints on structure formation



Planck: Carron 2022

## CMB-LSS cross-correlation: CIB



CIB map from Planck GNLIC 545 GHz

## 






Planck 2013-\#17

## Angular Clustering

Angular power spectrum of power spectrum between two maps X \& Y (could be same map!)

$$
C_{\ell}^{X Y}=\frac{2}{\pi} \int_{0}^{\infty} d \chi_{1} d \chi_{2} W^{X}\left(\chi_{1}\right) W^{Y}\left(\chi_{2}\right) \int_{0}^{\infty} k^{2} d k P_{X Y}\left(k ; z_{1}, z_{2}\right) j_{\ell}\left(k \chi_{1}\right) j_{\ell}\left(k \chi_{2}\right)
$$

Limber approximation, which generally works pretty well except for really large scales

$$
C_{\ell}^{X Y}=\int d \chi \frac{W^{X}(\chi) W^{Y}(\chi)}{\chi^{2}} P_{X Y}\left(k_{\perp}=\frac{\ell+1 / 2}{\chi}, k_{z}=0\right)
$$

weights for CMB lensing or some galaxy tracer

$$
W^{\kappa}(\chi)=\frac{3}{2}\left(\Omega_{m}+\Omega_{\nu}\right) H_{0}^{2}(1+z) \frac{\chi\left(\chi_{\star}-\chi\right)}{\chi_{\star}} \quad, \quad W^{g}(\chi)=b(z) H(z) \frac{d N}{d z}
$$

## CMB lensing is sensitive to

 higher z sources

Yuuki Omori

## Angular Clustering

$$
\begin{aligned}
& C_{0}^{\kappa g}=b^{\text {eff }} \int d \chi \frac{W^{\kappa}(\chi)}{\sim} H(z)\left\lceil f(z) \frac{d N_{p}}{\sim}\right]_{P(k \chi=\ell+1 / 2)} \\
& C_{\ell}^{g g}=\left(b^{\mathrm{eff}}\right)^{2} \int d \chi \frac{1}{\chi^{2}} H(z)^{2}\left[f(z) \frac{d N_{p}}{d z}\right]^{2} P(k \chi=\ell+1 / 2) \\
& W^{\kappa}(\chi)=\frac{3}{2}\left(\Omega_{m}+\Omega_{\nu}\right) H_{0}^{2}(1+z) \frac{\chi\left(\chi_{\star}-\chi\right)}{\chi_{\star}}, \quad W^{g}(\chi)=b(z) H(z) \frac{d N}{d z}
\end{aligned}
$$

- CMB lensing power measures projected power of all matter (no b)
- galaxy clustering measures projected power of biased tracers (b dN/dz) ${ }^{2}$
- CMB lensing X galaxies measures projected power in common (b dN/dz)


## Example:WISE X Planck lensing



Krolewski et al 1909.07412

## Example:WISE X Planck lensing





Snowmass CMB Measurements white paper 2203.07638

# Power spectrum Uncertainties 

- fundamentally limited by number of independent measurements, noise
- $\quad \mathrm{C}_{1 ; \text { meas }}=\mathrm{C}_{1 ; \text { true }}+\mathrm{C}_{1 ; \text { noise }} \begin{aligned} & \text { in any single map you } \\ & \text { can't tell the difference }\end{aligned}$
- $\operatorname{Var}\left(\mathrm{C}_{1}\right) \sim\left(2 / \mathrm{n}_{\text {meas }}\right) \mathrm{C}_{1}^{2} \quad$ "sample variance"
- more modes means better measurement of $\mathrm{C}_{1 ; \text { true }}+\mathrm{C}_{1 ; \text { noise }}$
- lower noise gives better measure of $C_{i ; \text { true }}$


## Delensing lowers sample variance for B-mode searches

SPT-3G + external tracers (galaxies+CIB) can remove $80 \%$ of lensing power

BICEP/Keck is signaldominated, so delensing directly reduces the error bar for constraints on tensors
(also true for SPT-3G, for however low in I can be reached)


