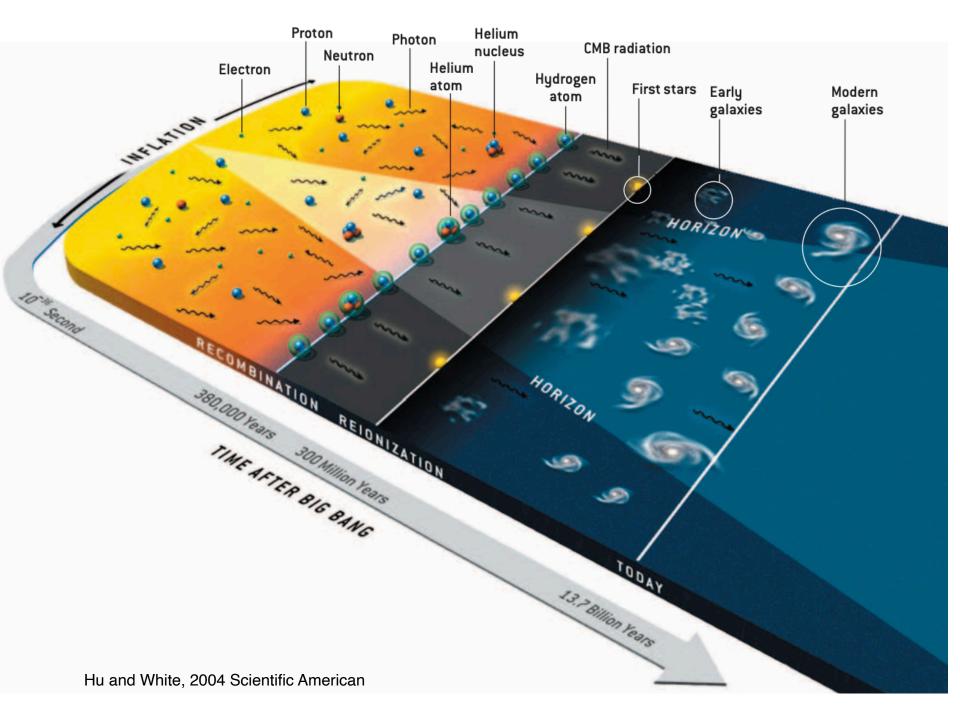
# CMB Probes of LSS: Lensing & SZ

#### **Gil Holder**



# Outline

- the "surface of last scattering" is actually not the final word for lots of photons
  - ★ Thomson scattering
  - ★ lensing
  - ★ extragalactic foregrounds

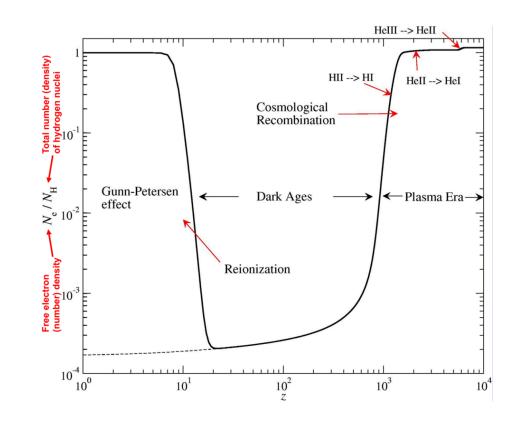


## **Ionization non-equilibrium**

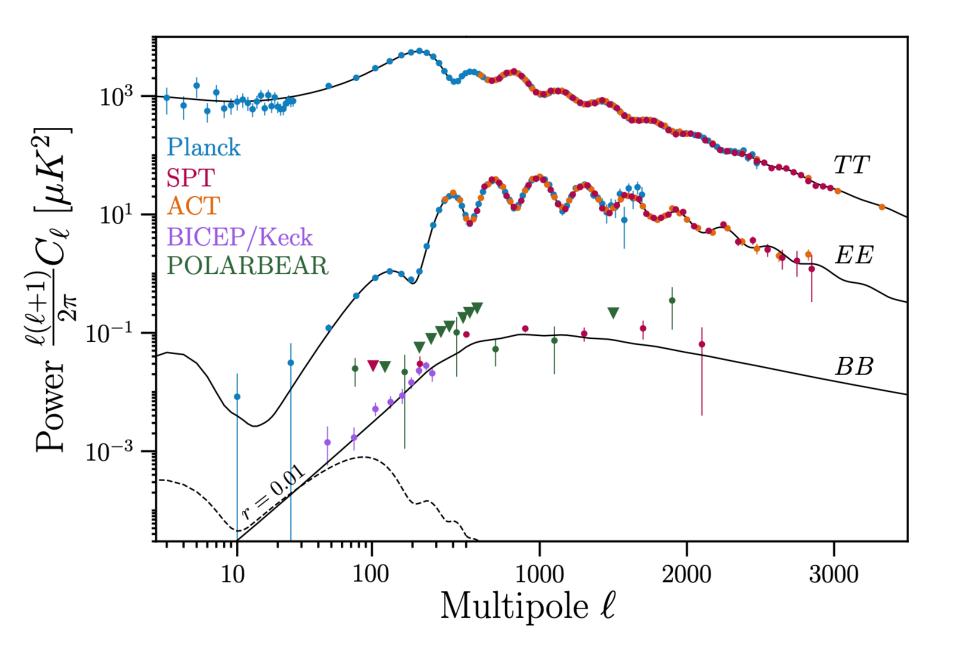
Hubble expansion causes recombinations to "freeze out" as e- and p+ can't find each other in the dilute universe

small residual ionization keeps gas and CMB thermally coupled for a surprisingly long time

reionization leads to unbinding of electrons from H atoms due to UV background ionizing field

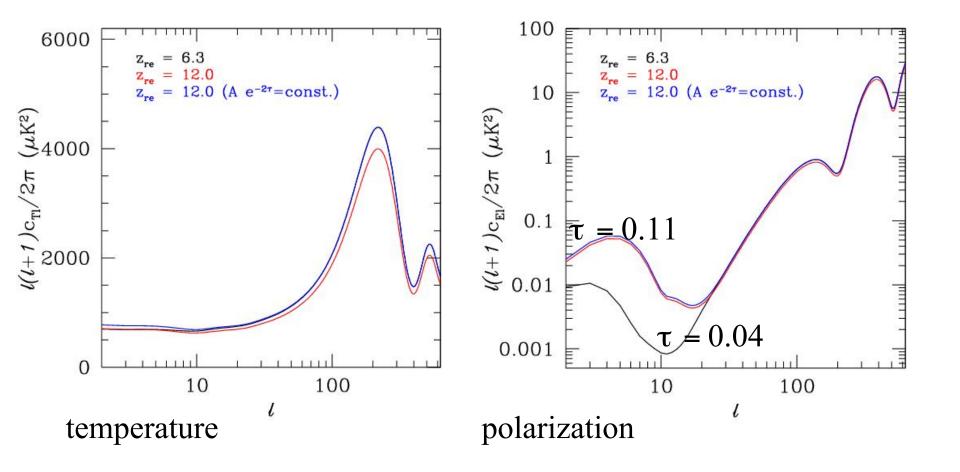


Sunyaev & Chluba 2009

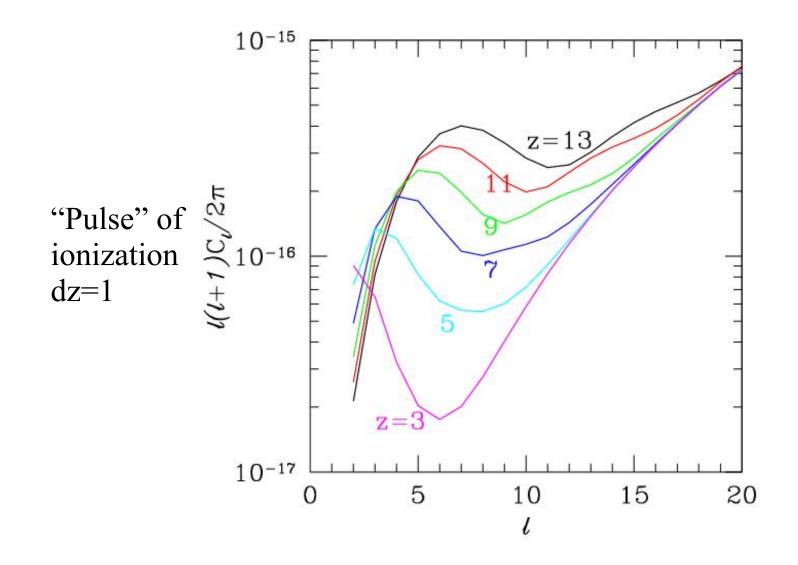


Snowmass CMB Measurements white paper 2203.07638

WMAP: +- 0.015 ; Planck: +-0.005 ; ???: +-0.002

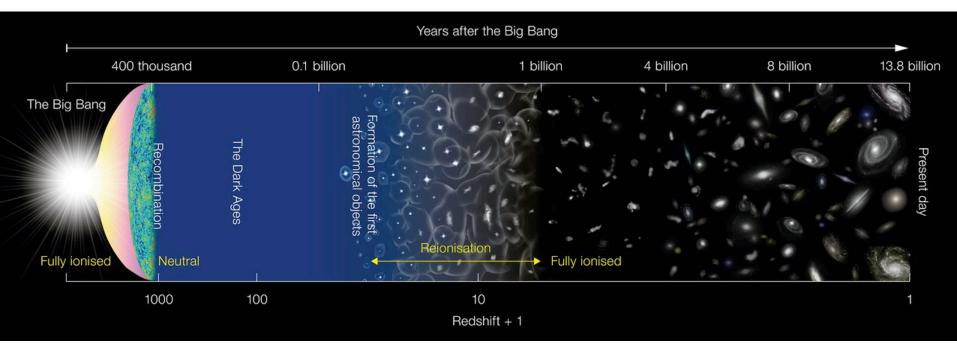


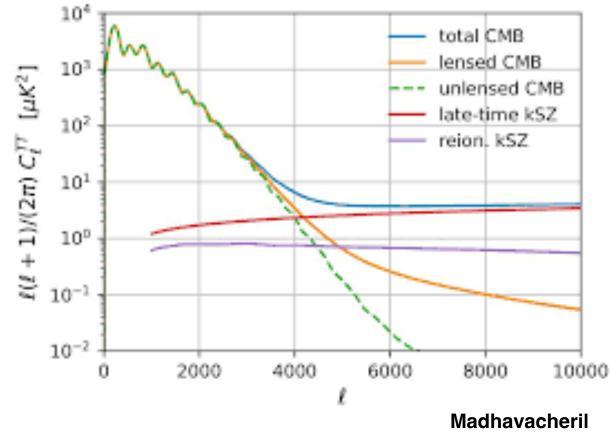
#### Ionization and CMB Polarization



CMB free photon electron kinetic Sunyaev-Zeldovich effect: Thomson hot plasma scattering by bulk scattered photon flow of electrons bulk motion  $\frac{\Delta T \,\mathrm{CMB}}{T \,\mathrm{CMB}} \approx -\int \sigma \,\mathrm{T} n_{\mathrm{e}} \,n \cdot \boldsymbol{\beta}_{\mathrm{p}} \,\mathrm{d}l$ 

#### clumps of moving electrons at reionization, and at late times



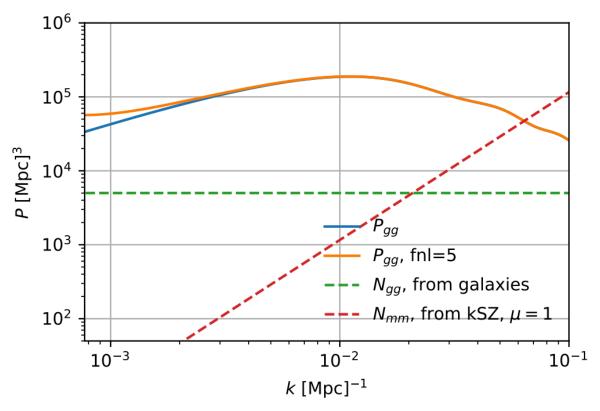


current status:

detected in crosscorrelation with galaxies/ clusters

forecast:

soon to be detected in auto-spectrum, higher order correlations could be very powerful for largest scales

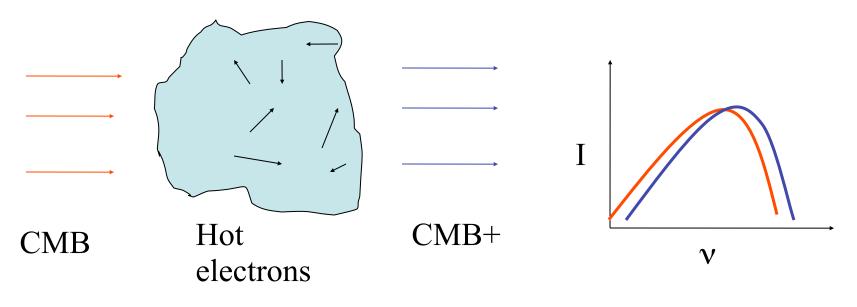


Munchmeyer et al 20181

 thermal Sunyaev-Zeldovich effect: Thomson scattering by thermal motions of electrons

Thermal Souriyaev  
Zeldovich effect:  
Thomson  
scattering by  
thermal motions of  
electrons  
$$y = \int \frac{k_B T_e}{m_e c^2} d\tau e = \int \frac{k_B T_e}{m_e c^2} n_e \sigma_T dl = \frac{\sigma_T}{m_e c^2} \int P_e dl.$$

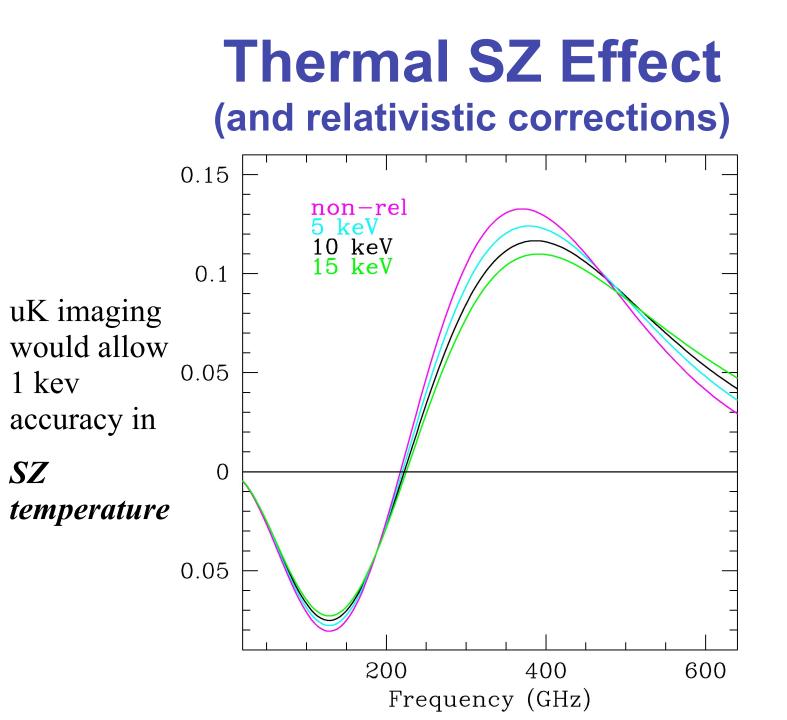
### Thermal Sunyaev-Zel'dovich Effect

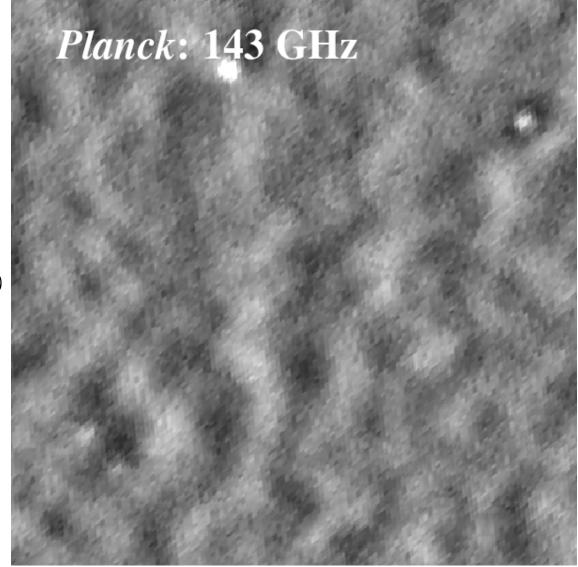


Optical depth:  $\tau \sim 0.01$ 

Fractional energy gain per scatter: *Typical cluster signal:* ~500 uK

$$\frac{kT}{m_e c^2} \sim 0.01$$

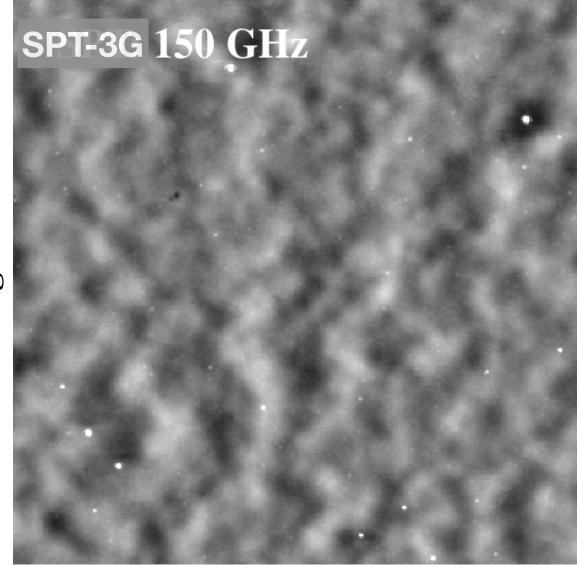




# **3 degrees**

#### **3 degrees**

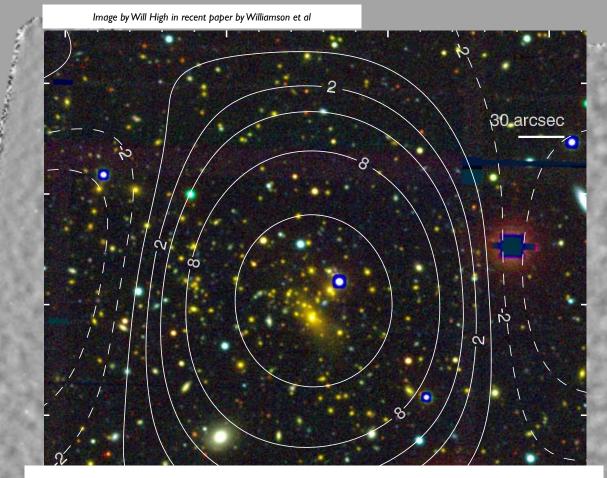
Srini Raghunathan



#### 3 degrees

Srini Raghunathan

# **3 degrees**



#### patch of isolated cosmic fog

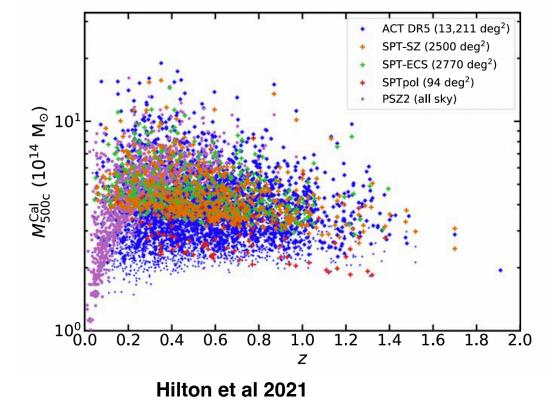
## One of the heaviest objects in the universe >10<sup>15</sup> solar masses

1 degree

and the second se

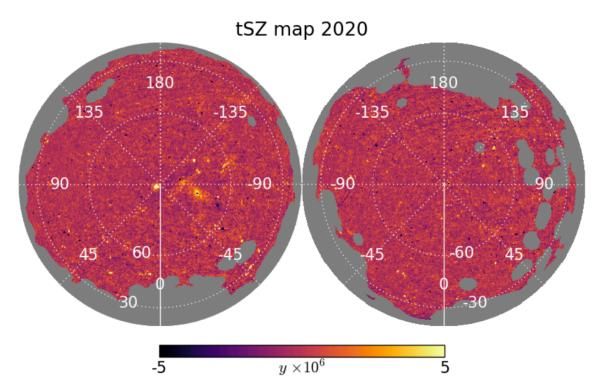
# tSZ-selected Galaxy Clusters

 now many thousands of galaxy clusters have been discovered by their CMB signatures



# Compton y maps

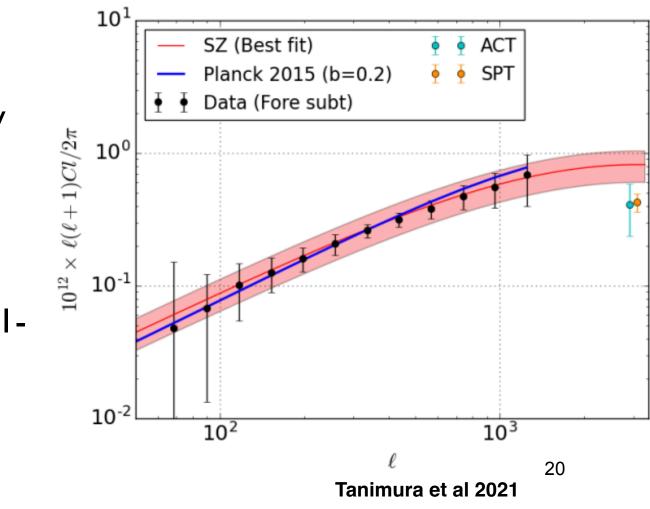
Tanimura et al.



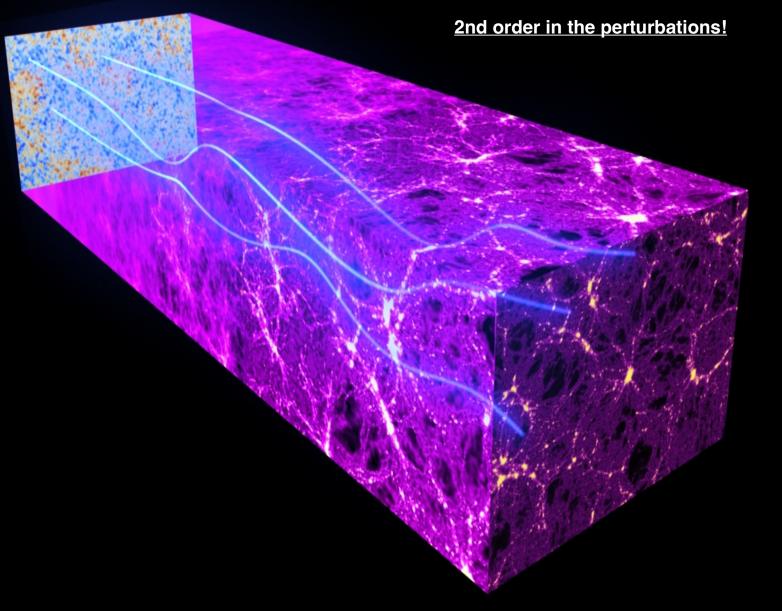
## Compton y power spectrum

Hint that maybe tSZ power is low at high ell

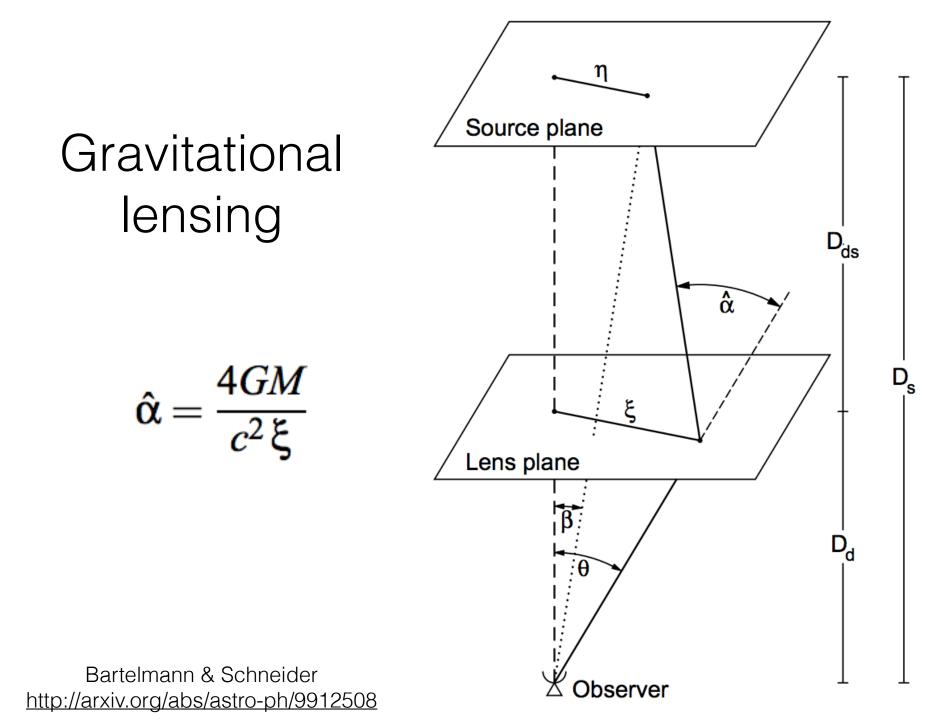
Almost entirely just Ihalo term

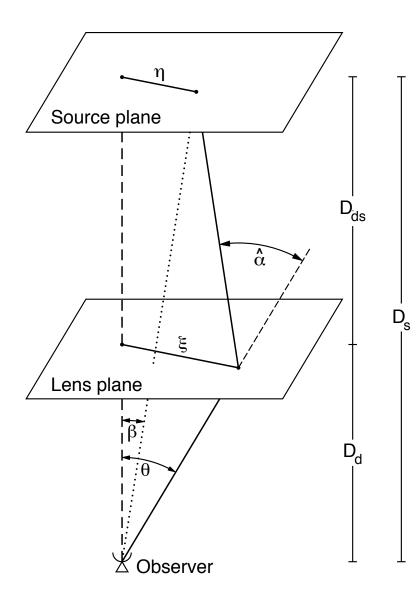


#### lensing of primordial fluctuations by intervening fluctuations



#### ESA and the Planck Collaboration





$$\vec{\beta} = \vec{\theta} - \frac{D_{\rm ds}}{D_{\rm s}} \hat{\vec{\alpha}} (D_{\rm d} \vec{\theta}) \equiv \vec{\theta} - \vec{\alpha} (\vec{\theta})$$

$$\vec{\alpha}(\vec{\theta}) = \frac{1}{\pi} \int_{\mathbb{R}^2} d^2 \theta' \kappa(\vec{\theta}') \frac{\vec{\theta} - \vec{\theta}'}{|\vec{\theta} - \vec{\theta}'|^2}$$

$$\begin{split} \psi(\vec{\theta}) &= \frac{1}{\pi} \int_{\mathbb{R}^2} d^2 \theta' \kappa(\vec{\theta}') \ln |\vec{\theta} - \vec{\theta}'| \\ & \underset{\text{potential}}{\overset{\text{lensing}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{conve}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{con$$

$$\mathcal{A}(\vec{\theta}) = \frac{\partial \vec{\beta}}{\partial \vec{\theta}} = \left(\delta_{ij} - \frac{\partial^2 \psi(\vec{\theta})}{\partial \theta_i \partial \theta_j}\right) = \left(\begin{array}{ccc} 1 - \kappa - \gamma_1 & -\gamma_2 \\ -\gamma_2 & 1 - \kappa + \gamma_1 \end{array}\right) ,$$

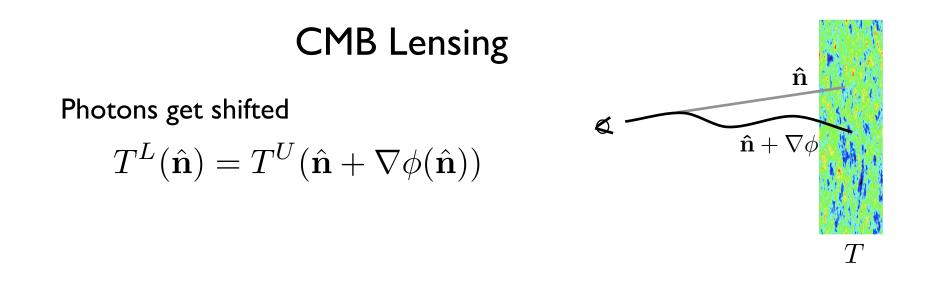
where we have introduced the components of the shear  $\gamma \equiv \gamma_1 + i\gamma_2 = |\gamma|e^{2i\phi}$ 

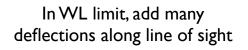
$$\gamma_1 = \frac{1}{2}(\psi_{,11} - \psi_{,22}) , \quad \gamma_2 = \psi_{,12} ,$$

$$\mathcal{A} = (1 - \kappa) \begin{pmatrix} 1 - g_1 & -g_2 \\ -g_2 & 1 + g_1 \end{pmatrix}$$

distortion has overall magnification image gets bigger (or smaller), not brighter (dimmer)

$$g(\vec{\theta}) \equiv \frac{\gamma(\vec{\theta})}{1 - \kappa(\vec{\theta})}$$



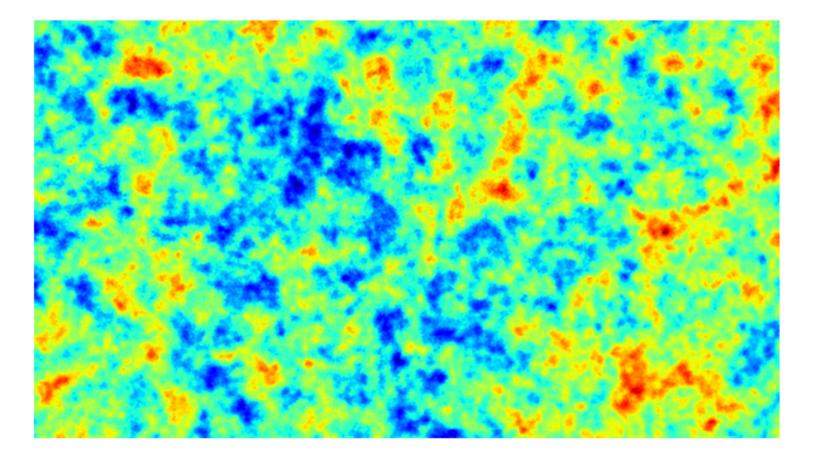


$$\nabla \phi(\hat{\mathbf{n}}) = -2 \int_0^{\chi_\star} d\chi \, \frac{\chi_\star - \chi}{\chi_\star \chi} \nabla_\perp \Phi(\chi \hat{\mathbf{n}}, \chi)$$

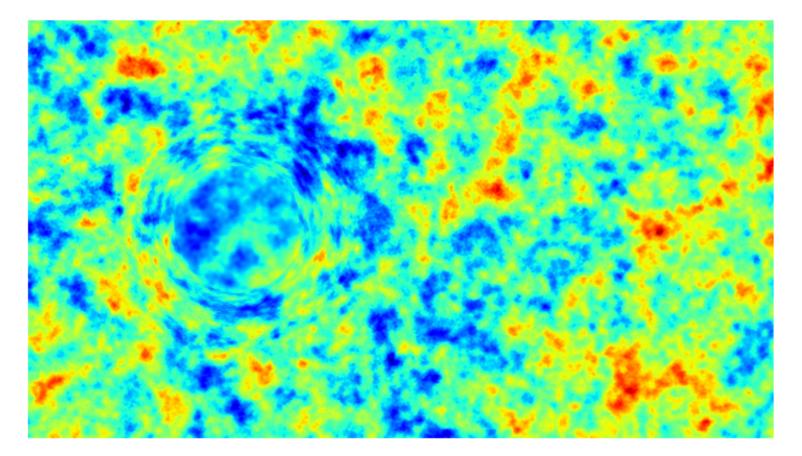
Broad kernel, peaks at z ~ 2

- CMB is a unique source for lensing
  - Gaussian, with well-understood power spectrum (contains all info)
  - At redshift which is (a) unique, (b) known, and
     (c) highest

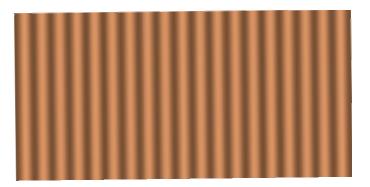
patch of sky (the North pole) as seen by Planck (17x10 degrees)



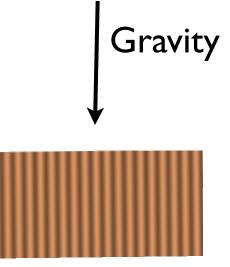
SIMULATED lensing effect (20x larger than typical)



# Lensing simplified

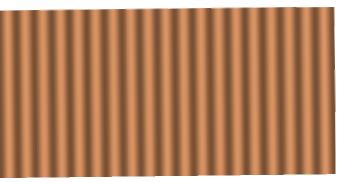


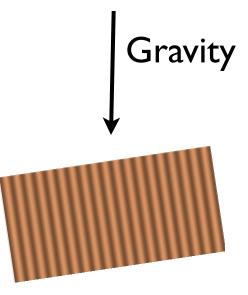
 gravitational potentials distort images by stretching, squeezing, shearing



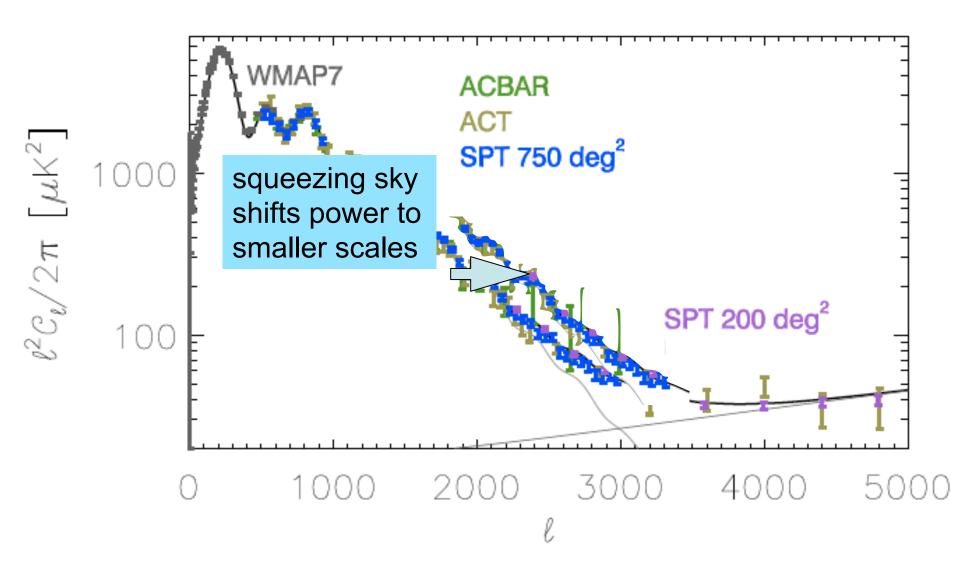
# Lensing simplified

- where gravity stretches, gradients become smaller
  - where gravity compresses, gradients are larger
- shear changes
   direction

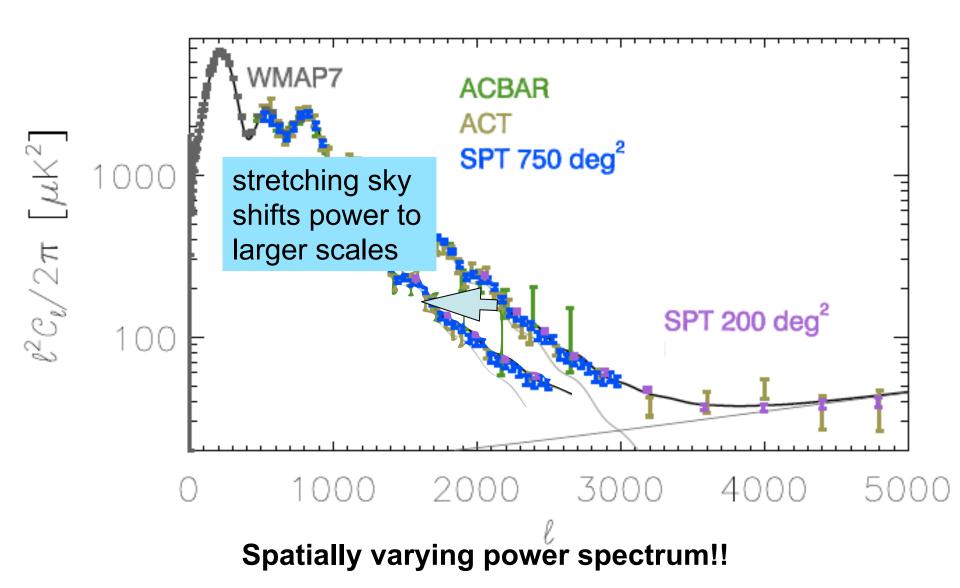




### **CMB Power Spectrum**

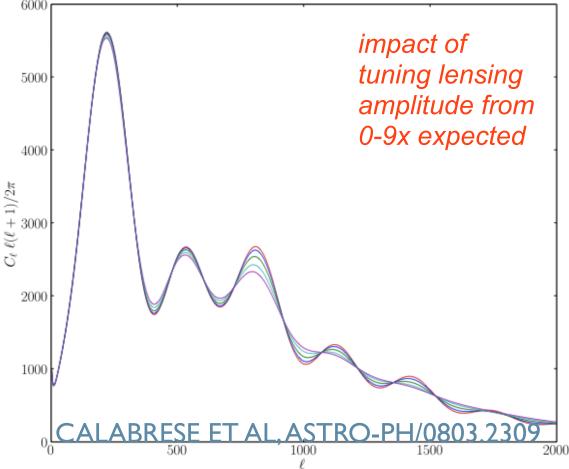


### **CMB Power Spectrum**



## Effect on CMB Power Spectrum

- mixing of power leads to smoothing of acoustic peaks
- small effect but data is really good



## **Mode Coupling from Lensing**

$$T^{L}(\hat{\mathbf{n}}) = T^{U}(\hat{\mathbf{n}} + \nabla \phi(\hat{\mathbf{n}}))$$
  
=  $T^{U}(\hat{\mathbf{n}}) + \nabla T^{U}(\hat{\mathbf{n}}) \cdot \nabla \phi(\hat{\mathbf{n}}) + O(\phi^{2}),$ 

СМВІ

Ιx

• Non-gaussian mode coupling for  $\ \ l_1 
eq -l_2$  :

$$\langle T^{L}(\mathbf{l}_{1})T^{L}(\mathbf{l}_{2})\rangle = \mathbf{L} \cdot (\mathbf{l}_{1}C^{T}_{l_{1}} + \mathbf{l}_{2}C^{T}_{l_{2}})\phi(\mathbf{L}) + O(\phi^{2})$$

$$\mathbf{L} = \mathbf{l}_1 + \mathbf{l}_2$$

- We extract φ by taking a suitable average over CMB multipoles separated by a distance L
- We use the standard Hu quadratic estimator.

### E-modes and B-modes

$$Q(l) = [E(l)\cos(2\phi_l) - B(l)\sin(2\phi_l)]$$
  
$$U(l) = [E(l)\sin(2\phi_l) + B(l)\cos(2\phi_l)].$$

- E/B is a different way to express polarization field
- easy to understand in flat-sky limit (i.e. Fourier modes)

#### E-modes/B-modes

- E-modes vary spatially parallel or perpedicular to polarization direction
- B-modes vary spatially at 45 degrees
- CMB
  - scalar perturbations only generate \*only\* E
- Lensing of CMB is much more obvious in polarization!

## E modes

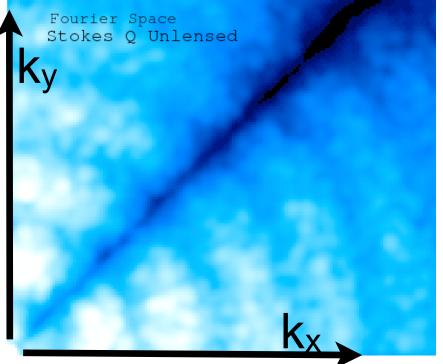


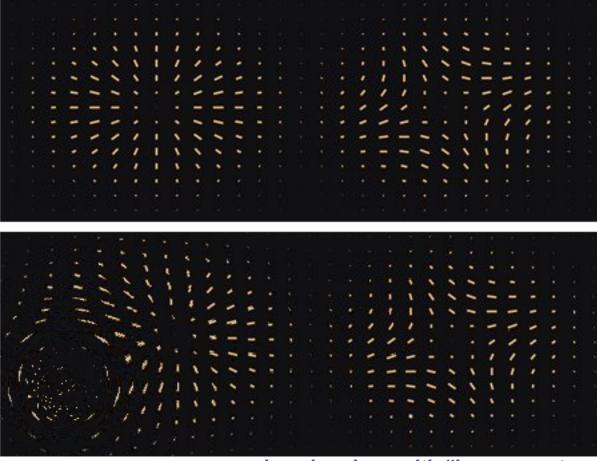
Image of positive kx/positive ky Fourier transform of a 10x10 deg chunk of Stokes Q CMB map [simulated; nothing clever done to it]

### **B** Modes from E Modes

Before: pure E mode (left) and pure B mode (right)

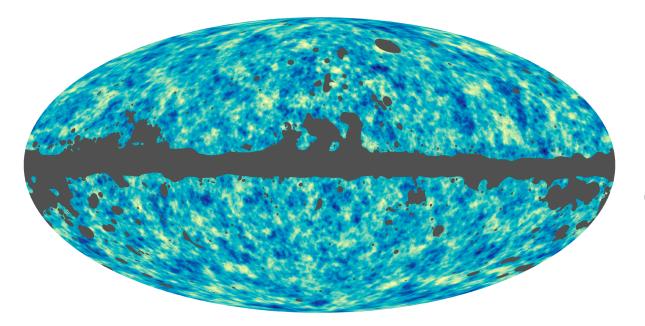
From B-pol.org

After: large point mass lenses image

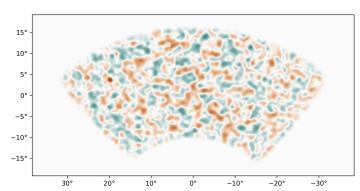


Lensing done with "Lens an astrophysicist"

http://theory2.phys.cwru.edu/~pete/GravitationalLens/



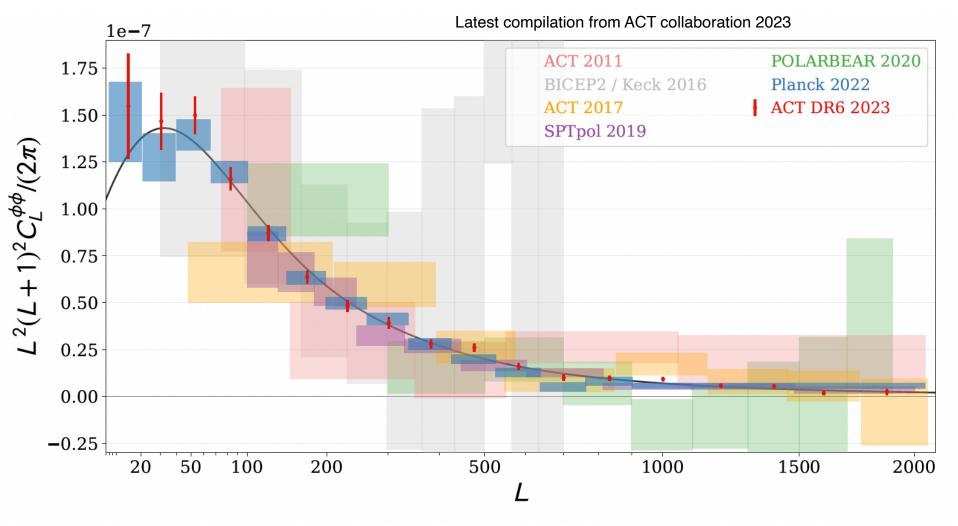
### Planck (~all-sky)



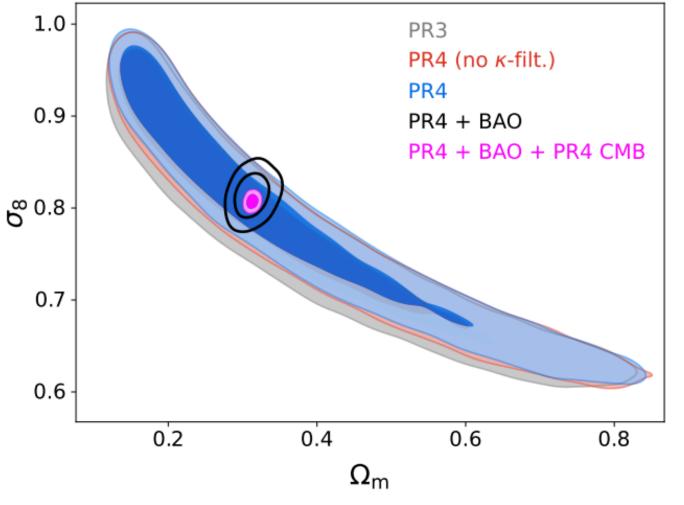


### SPT-3G (1500 square degrees)

## **CMB** Lensing Power Spectra

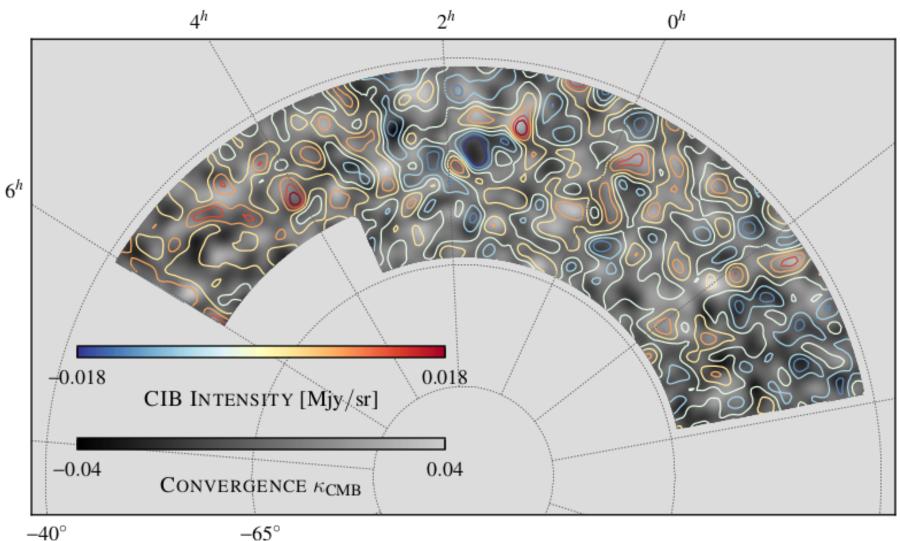


### Cosmological contraints on structure formation



Planck: Carron 2022

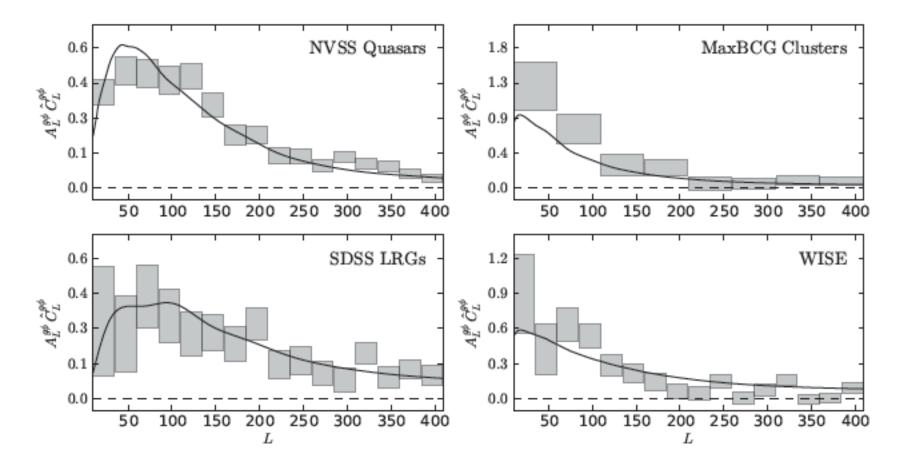
### **CMB-LSS cross-correlation: CIB**



#### CIB map from Planck GNLIC 545 GHz

Omori, Chown, Simard, KTS, et. al (arXv:1705.00743)

### Planck X Galaxies, etc.



Planck 2013-#17

41

# Angular Clustering

Angular power spectrum of power spectrum between two maps X & Y (could be same map!)

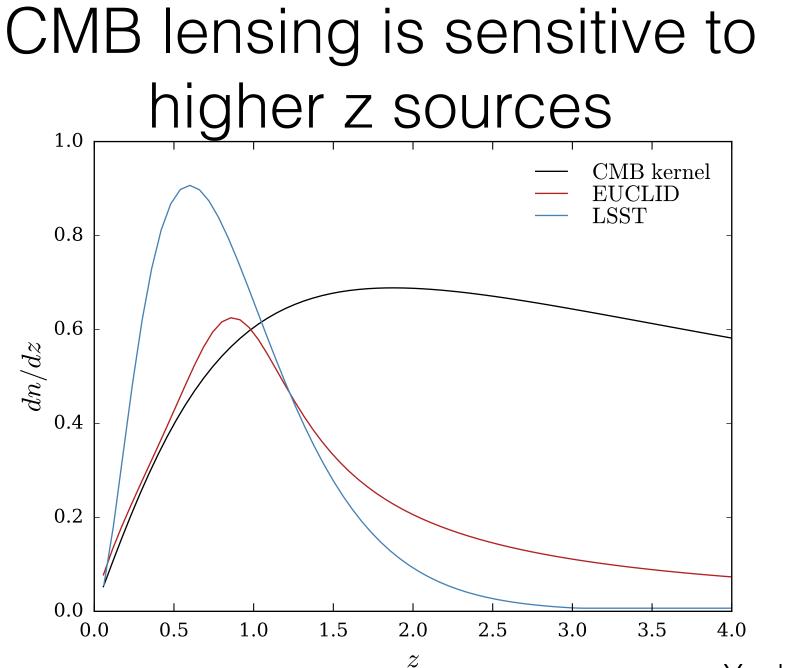
$$C_{\ell}^{XY} = \frac{2}{\pi} \int_0^\infty d\chi_1 \, d\chi_2 \, W^X(\chi_1) W^Y(\chi_2) \int_0^\infty k^2 \, dk \, P_{XY}(k; z_1, z_2) j_\ell(k\chi_1) j_\ell(k\chi_2)$$

Limber approximation, which generally works pretty well except for really large scales

$$C_{\ell}^{XY} = \int d\chi \; \frac{W^{X}(\chi)W^{Y}(\chi)}{\chi^{2}} \; P_{XY}\left(k_{\perp} = \frac{\ell + 1/2}{\chi}, k_{z} = 0\right)$$

#### weights for CMB lensing or some galaxy tracer

$$W^{\kappa}(\chi) = \frac{3}{2}(\Omega_m + \Omega_{\nu})H_0^2(1+z) \ \frac{\chi(\chi_{\star} - \chi)}{\chi_{\star}} \quad , \quad W^g(\chi) = b(z)H(z) \ \frac{dN}{dz}$$



Yuuki Omori

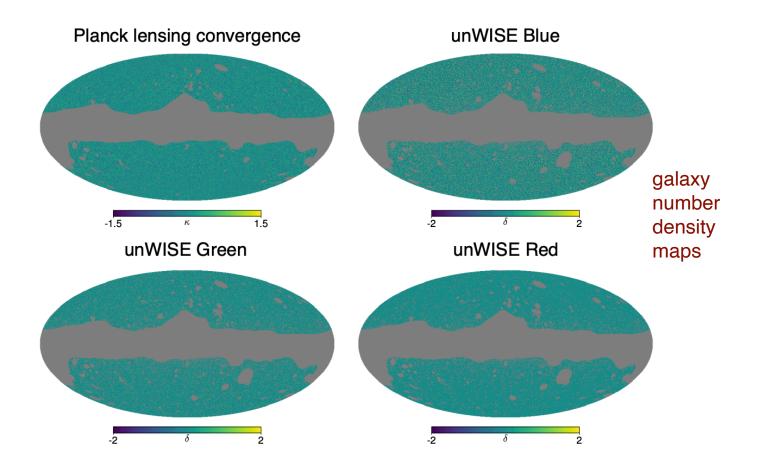
# Angular Clustering

$$\begin{split} C_{\ell}^{\kappa g} &= b^{\text{eff}} \int d\chi \frac{W^{\kappa}(\chi)}{2} H(z) \left[ f(z) \frac{dN_p}{z} \right] P(k\chi = \ell + 1/2) \\ C_{\ell}^{gg} &= (b^{\text{eff}})^2 \int d\chi \frac{1}{\chi^2} H(z)^2 \left[ f(z) \frac{dN_p}{dz} \right]^2 P(k\chi = \ell + 1/2) \\ W^{\kappa}(\chi) &= \frac{3}{2} (\Omega_m + \Omega_{\nu}) H_0^2 (1+z) \ \frac{\chi(\chi_{\star} - \chi)}{\chi_{\star}} \quad , \quad W^g(\chi) = b(z) H(z) \ \frac{dN}{dz} \end{split}$$

- CMB lensing power measures projected power of all matter (no b)
- galaxy clustering measures projected power of biased tracers (b dN/dz)<sup>2</sup>
- CMB lensing X galaxies measures projected power in common (b dN/dz)

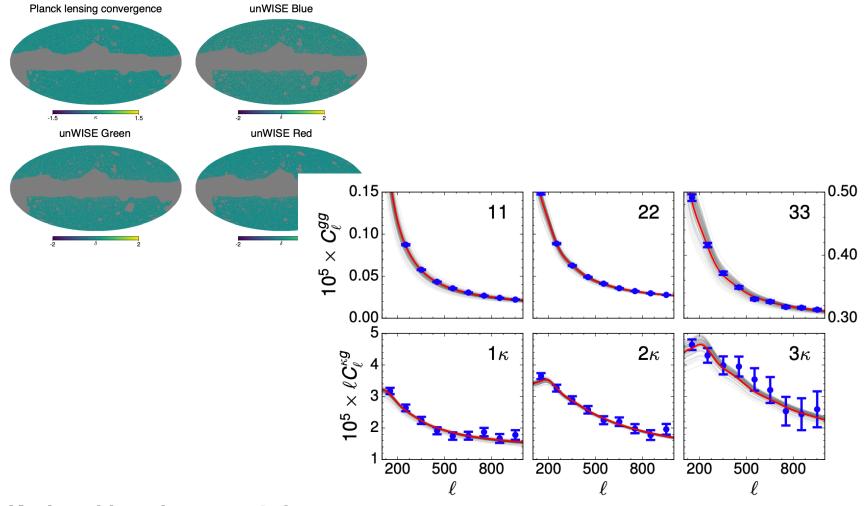
Krolewski et al 1909.07412

# Example: WISE X Planck lensing



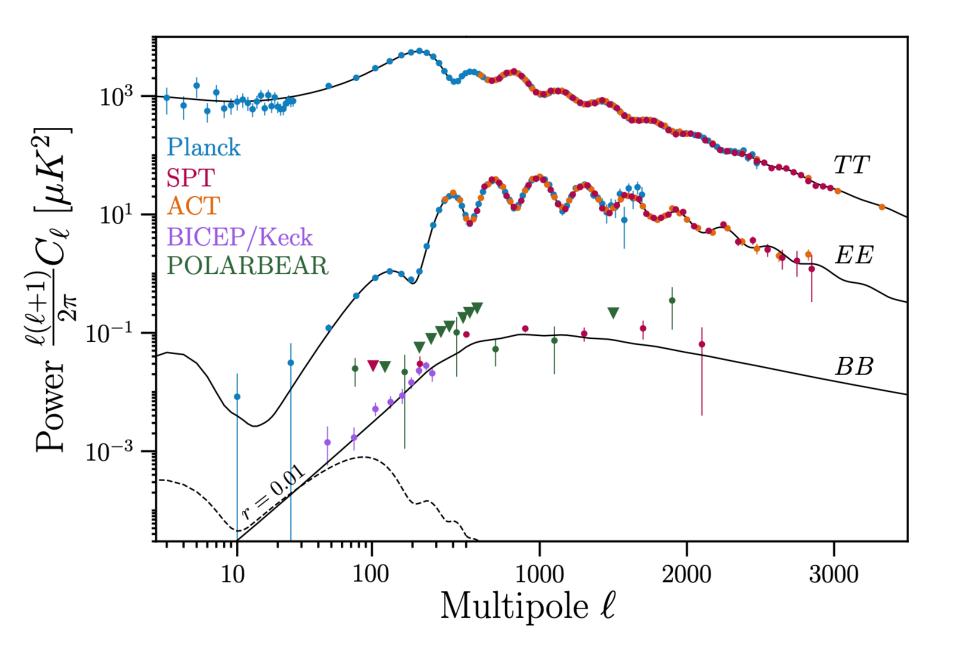
#### Krolewski et al 1909.07412

## Example: WISE X Planck lensing



40

Krolewski et al 1909.07412



Snowmass CMB Measurements white paper 2203.07638

# Power spectrum Uncertainties

 fundamentally limited by number of independent measurements, noise

in any single map you can't tell the difference

- $Var(C_I) \sim (2/n_{meas}) C_I^2$  <u>"sample variance"</u>
- more modes means better measurement of C<sub>l;true</sub>+C<sub>l;noise</sub>
- lower noise gives better measure of C<sub>l;true</sub>

# Delensing lowers sample variance for B-mode searches

SPT-3G + external tracers (galaxies+CIB) can remove 80% of lensing power

BICEP/Keck is signaldominated, so delensing directly reduces the error bar for constraints on tensors (also true for SPT-3G, for however low in I can be reached)

