CMB Probes of LSS: Lensing & SZ

Gil Holder

Outline

- the "surface of last scattering" is actually not the final word for lots of photons
 - ★ Thomson scattering
 - ★ lensing
 - ★ extragalactic foregrounds

Ionization non-equilibrium

Hubble expansion causes recombinations to "freeze out" as e- and p+ can't find each other in the dilute universe

small residual ionization keeps gas and CMB thermally coupled for a surprisingly long time

reionization leads to unbinding of electrons from H atoms due to UV background ionizing field

Sunyaev & Chluba 2009

Snowmass CMB Measurements white paper 2203.07638

WMAP: +- 0.015 ; Planck: +-0.005 ; ???: +-0.002

Ionization and CMB Polarization

CMB free photon electron kinetic Sunyaev-Zeldovich effect: Thomson hot plasma scattering by bulk scattered photon flow of electrons bulk motion $\frac{\Delta T \,\mathrm{CMB}}{T \,\mathrm{CMB}} \approx -\int \sigma \,\mathrm{T} n_{\mathrm{e}} \,n \cdot \boldsymbol{\beta}_{\mathrm{p}} \,\mathrm{d}l$

clumps of moving electrons at reionization, and at late times

current status:

detected in crosscorrelation with galaxies/ clusters

forecast:

soon to be detected in auto-spectrum, higher order correlations could be very powerful for largest scales

Munchmeyer et al 20181

 thermal Sunyaev-Zeldovich effect: Thomson scattering by thermal motions of electrons

Thermal Souriyaev
Zeldovich effect:
Thomson
scattering by
thermal motions of
electrons
$$y = \int \frac{k_B T_e}{m_e c^2} d\tau e = \int \frac{k_B T_e}{m_e c^2} n_e \sigma_T dl = \frac{\sigma_T}{m_e c^2} \int P_e dl.$$

Thermal Sunyaev-Zel'dovich Effect

Optical depth: $\tau \sim 0.01$

Fractional energy gain per scatter: *Typical cluster signal:* ~500 uK

$$\frac{kT}{m_e c^2} \sim 0.01$$

3 degrees

3 degrees

Srini Raghunathan

3 degrees

Srini Raghunathan

3 degrees

patch of isolated cosmic fog

One of the heaviest objects in the universe >10¹⁵ solar masses

1 degree

and the second se

tSZ-selected Galaxy Clusters

 now many thousands of galaxy clusters have been discovered by their CMB signatures

Compton y maps

Tanimura et al.

Compton y power spectrum

Hint that maybe tSZ power is low at high ell

Almost entirely just Ihalo term

lensing of primordial fluctuations by intervening fluctuations

ESA and the Planck Collaboration

$$\vec{\beta} = \vec{\theta} - \frac{D_{\rm ds}}{D_{\rm s}} \hat{\vec{\alpha}} (D_{\rm d} \vec{\theta}) \equiv \vec{\theta} - \vec{\alpha} (\vec{\theta})$$

$$\vec{\alpha}(\vec{\theta}) = \frac{1}{\pi} \int_{\mathbb{R}^2} d^2 \theta' \kappa(\vec{\theta}') \frac{\vec{\theta} - \vec{\theta}'}{|\vec{\theta} - \vec{\theta}'|^2}$$

$$\begin{split} \psi(\vec{\theta}) &= \frac{1}{\pi} \int_{\mathbb{R}^2} d^2 \theta' \kappa(\vec{\theta}') \ln |\vec{\theta} - \vec{\theta}'| \\ & \underset{\text{potential}}{\overset{\text{lensing}}{\overset{\text{convergence}}{\overset{\text{conve}}{\overset{\text{convergence}}{\overset{\text{convergence}}{\overset{\text{con$$

$$\mathcal{A}(\vec{\theta}) = \frac{\partial \vec{\beta}}{\partial \vec{\theta}} = \left(\delta_{ij} - \frac{\partial^2 \psi(\vec{\theta})}{\partial \theta_i \partial \theta_j}\right) = \left(\begin{array}{ccc} 1 - \kappa - \gamma_1 & -\gamma_2 \\ -\gamma_2 & 1 - \kappa + \gamma_1 \end{array}\right) ,$$

where we have introduced the components of the shear $\gamma \equiv \gamma_1 + i\gamma_2 = |\gamma|e^{2i\phi}$

$$\gamma_1 = \frac{1}{2}(\psi_{,11} - \psi_{,22}) , \quad \gamma_2 = \psi_{,12} ,$$

$$\mathcal{A} = (1 - \kappa) \begin{pmatrix} 1 - g_1 & -g_2 \\ -g_2 & 1 + g_1 \end{pmatrix}$$

distortion has overall magnification image gets bigger (or smaller), not brighter (dimmer)

$$g(\vec{\theta}) \equiv \frac{\gamma(\vec{\theta})}{1 - \kappa(\vec{\theta})}$$

$$\nabla \phi(\hat{\mathbf{n}}) = -2 \int_0^{\chi_\star} d\chi \, \frac{\chi_\star - \chi}{\chi_\star \chi} \nabla_\perp \Phi(\chi \hat{\mathbf{n}}, \chi)$$

Broad kernel, peaks at z ~ 2

- CMB is a unique source for lensing
 - Gaussian, with well-understood power spectrum (contains all info)
 - At redshift which is (a) unique, (b) known, and
 (c) highest

patch of sky (the North pole) as seen by Planck (17x10 degrees)

SIMULATED lensing effect (20x larger than typical)

Lensing simplified

 gravitational potentials distort images by stretching, squeezing, shearing

Lensing simplified

- where gravity stretches, gradients become smaller
 - where gravity compresses, gradients are larger
- shear changes
 direction

CMB Power Spectrum

CMB Power Spectrum

Effect on CMB Power Spectrum

- mixing of power leads to smoothing of acoustic peaks
- small effect but data is really good

Mode Coupling from Lensing

$$T^{L}(\hat{\mathbf{n}}) = T^{U}(\hat{\mathbf{n}} + \nabla \phi(\hat{\mathbf{n}}))$$

= $T^{U}(\hat{\mathbf{n}}) + \nabla T^{U}(\hat{\mathbf{n}}) \cdot \nabla \phi(\hat{\mathbf{n}}) + O(\phi^{2}),$

СМВІ

Ιx

• Non-gaussian mode coupling for $\ \ l_1
eq -l_2$:

$$\langle T^{L}(\mathbf{l}_{1})T^{L}(\mathbf{l}_{2})\rangle = \mathbf{L} \cdot (\mathbf{l}_{1}C^{T}_{l_{1}} + \mathbf{l}_{2}C^{T}_{l_{2}})\phi(\mathbf{L}) + O(\phi^{2})$$

$$\mathbf{L} = \mathbf{l}_1 + \mathbf{l}_2$$

- We extract φ by taking a suitable average over CMB multipoles separated by a distance L
- We use the standard Hu quadratic estimator.

E-modes and B-modes

$$Q(l) = [E(l)\cos(2\phi_l) - B(l)\sin(2\phi_l)]$$

$$U(l) = [E(l)\sin(2\phi_l) + B(l)\cos(2\phi_l)].$$

- E/B is a different way to express polarization field
- easy to understand in flat-sky limit (i.e. Fourier modes)

E-modes/B-modes

- E-modes vary spatially parallel or perpedicular to polarization direction
- B-modes vary spatially at 45 degrees
- CMB
 - scalar perturbations only generate *only* E
- Lensing of CMB is much more obvious in polarization!

E modes

Image of positive kx/positive ky Fourier transform of a 10x10 deg chunk of Stokes Q CMB map [simulated; nothing clever done to it]

B Modes from E Modes

Before: pure E mode (left) and pure B mode (right)

From B-pol.org

After: large point mass lenses image

Lensing done with "Lens an astrophysicist"

http://theory2.phys.cwru.edu/~pete/GravitationalLens/

Planck (~all-sky)

SPT-3G (1500 square degrees)

CMB Lensing Power Spectra

Cosmological contraints on structure formation

Planck: Carron 2022

CMB-LSS cross-correlation: CIB

CIB map from Planck GNLIC 545 GHz

Omori, Chown, Simard, KTS, et. al (arXv:1705.00743)

Planck X Galaxies, etc.

Planck 2013-#17

41

Angular Clustering

Angular power spectrum of power spectrum between two maps X & Y (could be same map!)

$$C_{\ell}^{XY} = \frac{2}{\pi} \int_0^\infty d\chi_1 \, d\chi_2 \, W^X(\chi_1) W^Y(\chi_2) \int_0^\infty k^2 \, dk \, P_{XY}(k; z_1, z_2) j_\ell(k\chi_1) j_\ell(k\chi_2)$$

Limber approximation, which generally works pretty well except for really large scales

$$C_{\ell}^{XY} = \int d\chi \; \frac{W^{X}(\chi)W^{Y}(\chi)}{\chi^{2}} \; P_{XY}\left(k_{\perp} = \frac{\ell + 1/2}{\chi}, k_{z} = 0\right)$$

weights for CMB lensing or some galaxy tracer

$$W^{\kappa}(\chi) = \frac{3}{2}(\Omega_m + \Omega_{\nu})H_0^2(1+z) \ \frac{\chi(\chi_{\star} - \chi)}{\chi_{\star}} \quad , \quad W^g(\chi) = b(z)H(z) \ \frac{dN}{dz}$$

Yuuki Omori

Angular Clustering

$$\begin{split} C_{\ell}^{\kappa g} &= b^{\text{eff}} \int d\chi \frac{W^{\kappa}(\chi)}{2} H(z) \left[f(z) \frac{dN_p}{z} \right] P(k\chi = \ell + 1/2) \\ C_{\ell}^{gg} &= (b^{\text{eff}})^2 \int d\chi \frac{1}{\chi^2} H(z)^2 \left[f(z) \frac{dN_p}{dz} \right]^2 P(k\chi = \ell + 1/2) \\ W^{\kappa}(\chi) &= \frac{3}{2} (\Omega_m + \Omega_{\nu}) H_0^2 (1+z) \ \frac{\chi(\chi_{\star} - \chi)}{\chi_{\star}} \quad , \quad W^g(\chi) = b(z) H(z) \ \frac{dN}{dz} \end{split}$$

- CMB lensing power measures projected power of all matter (no b)
- galaxy clustering measures projected power of biased tracers (b dN/dz)²
- CMB lensing X galaxies measures projected power in common (b dN/dz)

Krolewski et al 1909.07412

Example: WISE X Planck lensing

Krolewski et al 1909.07412

Example: WISE X Planck lensing

40

Krolewski et al 1909.07412

Snowmass CMB Measurements white paper 2203.07638

Power spectrum Uncertainties

 fundamentally limited by number of independent measurements, noise

in any single map you can't tell the difference

- $Var(C_I) \sim (2/n_{meas}) C_I^2$ <u>"sample variance"</u>
- more modes means better measurement of C_{l;true}+C_{l;noise}
- lower noise gives better measure of C_{l;true}

Delensing lowers sample variance for B-mode searches

SPT-3G + external tracers (galaxies+CIB) can remove 80% of lensing power

BICEP/Keck is signaldominated, so delensing directly reduces the error bar for constraints on tensors (also true for SPT-3G, for however low in I can be reached)

